【題目】對于任意一個四位數(shù).如果把它的前兩位數(shù)字和后兩位數(shù)字調(diào)換,則稱得到的數(shù)為的調(diào)換數(shù),把與其調(diào)換數(shù)之差記為,例如的調(diào)換數(shù)為,.
(1)求證:對于任意一個四位數(shù),都能被整除.
(2)我們把與的商記為,例如,若有兩數(shù)、,其中, ,,、都是正整數(shù)),那么當(dāng)時,求的最大值.
【答案】(1)詳見解析;(2)60
【解析】
(1)設(shè)任意一個四位數(shù)的千位、百位、十位、個位數(shù)字分別為、、、,分別表示出這個四位數(shù)與其調(diào)換數(shù),將這兩個數(shù)作差化簡即可得到結(jié)論;
(2)根據(jù)題目意思分別表示出和,將和代入得出,再表示出,結(jié)合題目條件即可得出結(jié)果.
(1)證明:設(shè)任意一個四位數(shù)的千位、百位、十位、個位數(shù)字分別為、、、,則
、、、為自然數(shù),
為自然數(shù),
能被整除;
(2)解:由題意可得:
,
,
,開口向下,且對稱軸為
又,且為正整數(shù),
當(dāng)時,取得最大值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,AB=BC,以AB為直徑的半圓分別交AC、BC于點D、E兩點,BF與⊙O相切于點B,交AC的延長線于點F.
(1)求證:D是AC的中點;
(2)若AB=12,sin∠CAE=,求CF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面內(nèi)容,并按要求解決問題:
問題:“在平面內(nèi),已知分別有2個點,3個點,4個點,5個點,…,個點,其中任意三個點都不在同一條直線上經(jīng)過每兩點畫一條直線,它們可以分別畫多少條直線?”
探究:為了解決這個問題,希望小組的同學(xué)們,設(shè)計了如下表格進(jìn)行探究:(為了方便研究問題,圖中每條線段表示過線段兩端點的一條直線)
點數(shù) | 2 | 3 | 4 | 5 | … | |
示意圖 | … | |||||
直線條數(shù) | 1 | … |
請解答下列問題:
(1)請幫助希望小組歸納,并直接寫出結(jié)論:當(dāng)平面內(nèi)有個點時,直線條數(shù)為______;
(2)若某同學(xué)按照本題中的方法,共畫了28條直線,求該平面內(nèi)有多少個已知點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與y=x+1交于點A(1,m),直線y=kx+b交y軸于點B(0,4).
(1)試確定m,k,b的值;
(2)當(dāng)0≤x≤2時,寫出二元一次方程kx﹣y=﹣b的所有整數(shù)解;
(3)寫出方程組的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①拋物線y=ax2+bx+3(a≠0)與x軸,y軸分別交于點A(﹣1,0),B(3,0),點C三點.
(1)試求拋物線的解析式;
(2)點D(2,m)在第一象限的拋物線上,連接BC,BD.試問,在對稱軸左側(cè)的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標(biāo);如果不存在,請說明理由;
(3)點N在拋物線的對稱軸上,點M在拋物線上,當(dāng)以M、N、B、C為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△AOB和△A1OB1是以點O為位似中心的位似圖形,且△AOB和△A1OB1的周長之比為1:2,點B的坐標(biāo)為(-1,2),則點B1的坐標(biāo)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一塊長方形的土地,寬為120m,建筑商把它分成甲、乙、丙三部分,甲和乙均為正方形,現(xiàn)計劃甲建住宅區(qū),乙建商場,丙地開辟成面積為3200m2的公園.若設(shè)這塊長方形的土地長為xm.那么根據(jù)題意列出的方程是_____.(將答案寫成ax2+bx+c=0(a≠0)的形式)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初三年級的一場籃球比賽中,如圖隊員甲正在投籃,已知球出手時離地面高m,與籃圈中心的水平距離為7m,當(dāng)球出手后水平距離為4m時到達(dá)最大高度4m,設(shè)籃球運行的軌跡為拋物線,籃圈距地面3m.
(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式并判斷此球能否準(zhǔn)確投中?
(2)此時,若對方隊員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com