【題目】A、B兩地相距150km,甲、乙兩人先后從A地出發(fā)向B地行駛,甲騎摩托車勻速行駛,乙開汽車且途中速度只改變一次,如圖表示的是甲、乙兩人之間的距離S關(guān)于時間t的函數(shù)圖象(點F的實際意義是乙開汽車到達B地),請根據(jù)圖象解答下列問題:

(1)求出甲的速度;

(2)求出乙前后兩次的速度,并求出點E的坐標;

(3)當甲、乙兩人相距10km時,求t的值.

【答案】(1)30km/h;(2)乙前后兩次的速度分別是80km/h、55km/h,點E的坐標是(3.9,0);(3)t的值是3.5h或4.3h

【解析】

(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得甲的速度;

(2)根據(jù)題意可以求得乙開始前后的速度,并求得點E的坐標;

(3)根據(jù)題意可知相遇前后都有可能相距10km,從而可以解答本題.

(1)由圖可得,

甲的速度為:60÷2=30km/h;

(2)設(shè)乙剛開始的速度為akm/h,

30×2.5﹣35=(2.5﹣2)a,

解得,a=80,

設(shè)乙變速后的速度為bkm/h,

150﹣0.5×80=(4.5﹣2.5)b,

解得,b=55,

35÷(55﹣30)=1.4,

∴點E的坐標為(3.9,0),

即乙前后兩次的速度分別是80km/h、55km/h,點E的坐標是(3.9,0);

(3)由題意可得,

t=2.5+(35﹣10)÷(55﹣30)=3.5t=3.9+10÷(55﹣30)=4.3,

t的值是3.5h4.3h.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】9分)如圖,已知點BE、CF在同一直線上,AB=DE,∠A=∠D,AC∥DF

求證:(1△ABC≌△DEF; (2BE=CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,現(xiàn)有兩點MN分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為每秒1個單位長度,點N的運度為每秒2個單位長度當點M第一次到達B點時,MN同時停止運動.
M、N運動幾秒后,M、N兩點重合?
M、N運動幾秒后,可得到等邊三角形?
當點M、NBC邊上運動時,能否得到以MN為底邊的等腰?如存在,請求出此時M、N運動的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為坐標原點,點C的坐標為(1,0),∠ACB=90°,∠B=30°,當點A在反比例函數(shù)y=的圖象上運動時,點B在函數(shù)_____(填函數(shù)解析式)的圖象上運動.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ABAC,∠A36°,BDCE分別是∠ABC、∠BCD的平分線,則圖中的等腰三角形有(  )

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖1,O是坐標原點,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點,AB⊥y軸于點A,AB=2,AO=4,OC=5,點D是線段AO上一動點,連接CD、BD.

(1)求出拋物線的解析式;

(2)如圖2,拋物線的對稱軸分別交BD、CD于點E、F,當△DEF為等腰三角形時,求出點D的坐標;

(3)當∠BDC的度數(shù)最大時,請直接寫出OD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系中的點,若點的坐標為(其中為常數(shù),且)則稱點為點的“系雅培點”;

例如:的“3系雅培點”為,即.

1)點的“2系雅培點”的坐標為 ;

2)若點軸的正半軸上,點的“系雅培點”為點,若在△中,,求的值;

3)已知點在第四象限,且滿足;點是點的“系雅培點”,若分式方程無解,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題12分)某乒乓球館使用發(fā)球機進行輔助訓練,出球口在桌面中線端點A處的正上方,假設(shè)每次發(fā)出的乒乓球的運動路線固定不變,且落在中線上,在乒乓球運行時,設(shè)乒乓球與端點A的水平距離為(米),與桌面的高度為(米),運行時間為(秒),經(jīng)多次測試后,得到如下部分數(shù)據(jù):

(秒)

0

016

02

04

06

064

08


(米)

0

04

05

1

15

16

2


(米)

025

0378

04

045

04

0378

025


1)當為何值時,乒乓球達到最大高度?

2)乒乓球落在桌面時,與端點A的水平距離是多少?

3)乒乓球落在桌面上彈起后,滿足

用含的代數(shù)式表示;

球網(wǎng)高度為014米,球桌長(14×2)米,若球彈起后,恰好有唯一的擊球點,可以將球沿直線扣殺到點A,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正六邊形和兩個等邊三角形的位置如圖所示,3=70°,則∠1+2=__

查看答案和解析>>

同步練習冊答案