【題目】(問題提出)
(1)如圖①,已知 AB ∥CD,求證 :∠1+∠MEN+∠2=360°
(推廣應(yīng)用)
(2)如圖②,已知 AB∥ CD,求∠1+∠2+∠3+∠4+∠5 +∠6的度數(shù)為___________.
如圖③,已知 AB∥CD ,求∠1+∠2+∠3+∠4+∠5 +∠6+…+∠n的度數(shù)為_________.
【答案】(1)見解析,(2)
【解析】
(1)過點(diǎn)E作EF∥CD,根據(jù)平行線的判定得出EF∥AB,根據(jù)平行線的性質(zhì)得出即可;(2)如圖②過E作EQ∥CD,過F作FW∥CD,過G作GR∥CD,過H作HY∥CD,根據(jù)平行線的判定得出EQ∥FW∥GR∥HY∥AB∥CD,根據(jù)平行線的性質(zhì)得出即可;如圖③,利用(1)(2)②發(fā)現(xiàn)規(guī)律,直接得到答案.
證明:(1)證明:過點(diǎn)E作EF∥CD,
∵AB∥CD, ∴EF∥AB,
∴∠1+∠MEF=180°,
同理∠2+∠NEF=180°,
∴∠1+∠2+∠MEN =360°;
(2)如圖②過E作EQ∥CD,過F作FW∥CD,過G作GR∥CD,過H作HY∥CD,
∵CD∥AB, ∴EQ∥FW∥GR∥HY∥AB∥CD,
∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,
∠RGH+∠GHY=180°,∠YHN+∠6=180°,
∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,
如圖③,由∠1+∠2+∠MEN,
∠1+∠2+∠3+∠4+∠5+∠6,
可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n,
故答案為:900°,;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若D點(diǎn)坐標(biāo)(4,3),點(diǎn)P是x軸正半軸上的動(dòng)點(diǎn),點(diǎn)Q是反比例函數(shù)圖象上的動(dòng)點(diǎn),若△PDQ為等腰直角三角形,則點(diǎn)P的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列能判定AB∥CD的條件有( )個(gè).
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 的對角線 AC 與 BD 相交于點(diǎn) O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( 。
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:如圖1,我們把一個(gè)四邊形ABCD的四邊中點(diǎn)E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題時(shí),有如下思路:連接AC.
結(jié)合小敏的思路作答:
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題的方法解決一下問題;
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是菱形,寫出結(jié)論并證明;
②當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是矩形,直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖:在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為、,點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC邊上運(yùn)動(dòng),當(dāng)是等腰三角形時(shí),點(diǎn)Р的坐標(biāo)為_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了促進(jìn)節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實(shí)行居民生活用電階梯電價(jià)方案,圖中折線反映了每戶每月用電電費(fèi)y(元)與用電量x(度)間的函數(shù)關(guān)系式.
(1)根據(jù)圖象,階梯電價(jià)方案分為三個(gè)檔次,填寫下表:
檔次 | 第一檔 | 第二檔 | 第三檔 |
每月用電量x(度) | 0<x≤140 |
(2)小明家某月用電120度,需交電費(fèi) 元
(3)求第二檔每月電費(fèi)y(元)與用電量x(度)之間的函數(shù)關(guān)系式;
(4)在每月用電量超過230度時(shí),每多用1度電要比第二檔多付電費(fèi)m元,小剛家某月用電290度,交電費(fèi)153元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個(gè)小正方形的邊長都是1,每個(gè)小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中以格點(diǎn)為頂點(diǎn)的畫一個(gè)面積為5的等腰直角三角形;
(2)在圖2中以格點(diǎn)為頂點(diǎn)畫一個(gè)三角形,使三角形三邊長分別為2,
(3)如圖3,點(diǎn)A,B,C是格點(diǎn),則∠ABC= ;
(4)在圖4中畫出△ABC(點(diǎn)C是格點(diǎn)),使△ABC為等腰三角形(畫一個(gè)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下圖是水平放置的破裂管道有水部分的截面.
(1)請你補(bǔ)全這個(gè)輸水管道的圓形截面;
(2)若這個(gè)輸水管道有水部分的水面寬AB=16 cm,水面最深地方的高度為4 cm,求這個(gè)圓形截面的半徑;
(3)在(2)的條件下,小明把一只寬12 cm的方形小木船放在修好后的圓柱形水管里,已知船高出水面13 cm,問此小船能順利通過這個(gè)管道嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com