【題目】已知關(guān)于x的一元二次方程x2+2x﹣a=0有兩個(gè)相等的實(shí)數(shù)根,則a的值是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P( x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)圖象C1與C2上的任一點(diǎn). 當(dāng)a ≤ x ≤ b時(shí),有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個(gè)函數(shù)在a ≤ x ≤ b上是“相鄰函數(shù)”,否則稱它們?cè)?/span>a ≤ x ≤ b上是“非相鄰函數(shù)”.
例如,點(diǎn)P(x, y1)與Q (x, y2)分別是兩個(gè)函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點(diǎn),當(dāng)-3 ≤ x ≤ -1時(shí),y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過構(gòu)造函數(shù)y = x + 2并研究該函數(shù)在-3 ≤ x ≤ -1上的性質(zhì),得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個(gè)函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.
(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,說明理由;
(2)若函數(shù)y = x2 - x與y = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;
(3)若函數(shù)y =與y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數(shù)”,直接寫出a的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=3,以頂點(diǎn)D為圓心作半徑為r的圓,若點(diǎn)A,B,C中至少有一個(gè)點(diǎn)在圓內(nèi),且至少有一個(gè)點(diǎn)在圓外,則r的值可以是下列選項(xiàng)中的( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ ACB=90°BC=2,將△ACB繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到△DCE(A和D,B和E分別是對(duì)應(yīng)頂點(diǎn)),若AE∥BC,則△ADE的周長為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=AC,點(diǎn)E、F分別為邊AB、BC上的點(diǎn),且AE=BF,連接CE、AF交于點(diǎn)H,連接DH交AG于點(diǎn)O.則下列結(jié)論①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH中,正確的是( 。
A.①②
B.①③
C.②③
D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】放學(xué)時(shí),王老師布置了一道因式分解題:(x+y)2+4(x-y)2-4(x2-y2),小明思考了半天,沒有得出答案.請(qǐng)你幫小明解決這個(gè)問題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新建火車站站前廣場(chǎng)需要綠化的面積為46000米2,施工隊(duì)在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結(jié)果提前4天完成了該項(xiàng)綠化工程.
(1)該項(xiàng)綠化工程原計(jì)劃每天完成多少米2?
(2)該項(xiàng)綠化工程中有一塊長為20米,寬為8米的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com