【題目】如圖,圓O的直徑AB為13cm,弦AC為5cm,∠ACB的平分線圓O于D,則CD長是_______cm
【答案】
【解析】試題分析:首先作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,得出CF的長,又△CDF是等腰直角三角形,從而求出CD的長.
解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.
∵CD平分∠ACB,
∴∠ACD=∠BCD
∴DF=DG,,
∴DA=DB.
∵∠AFD=∠BGD=90°,
在Rt△ADF和Rt△BDG,
,
∴Rt△AFD≌Rt△BGD(HL),
∴AF=BG.
同理:Rt△CDF≌Rt△CDG(HL),
∴CF=CG.
∵AB是直徑,
∴∠ACB=90°,
∵AC=5cm,AB=13cm,
∴BC==12(cm),
∴5+AF=12﹣AF,
∴AF=,
∴CF=,
∵CD平分∠ACB,
∴∠ACD=45°,
∵△CDF是等腰直角三角形,
∴CD=(cm).
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)的圖象交于C,D兩點,與x,y軸交于B,A兩點,且tan∠ABO=,OB=4,OE=2.
(1)求一次函數(shù)的解析式和反比例函數(shù)的解析式;
(2)求△OCD的面積;
(3)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中建立平面直角坐標系,已知△ABC三個頂點分別為A(﹣1,2)、B(2,1)、C(4,5).
(1)畫出△ABC關(guān)于x對稱的△A1B1C1;
(2)以原點O為位似中心,在x軸的上方畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2,并求出△A2B2C2的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠ABC和∠ACB的平分線交于點O,EF經(jīng)過點O且平行于BC,分別與AB,AC交于點E,F.
(1)若∠ABC=50°,∠ACB=60°,求∠BOC的度數(shù);
(2)若∠ABC=,∠ACB=,用,的代數(shù)式表示∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊿ABC中,∠A=40°,∠ACB=104°,BD為AC邊上的高,BE是⊿ABC的角平分線,求∠EBD的度數(shù).
【答案】32°
【解析】試題分析:根據(jù)三角形的內(nèi)角和定理求出∠ABC,再根據(jù)角平分線的定義求出∠ABE,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式求出∠BED,再根據(jù)直角三角形兩銳角互余列式進行計算即可得解.
試題解析:由三角形內(nèi)角和定理,得∠B+∠ACB+∠BAC=180°,
又∠A=40°,∠ACB=104°,
∴∠ABC=180°-40°-104°=36°,
又∵BE平分∠ABC,
∴∠ABE=∠ABC=18°
∴∠BED=∠A+∠ABE=40°+18°=58°,
又∵∠BED+∠DBE=90°,
∴∠DBE=90°-∠BED=90°-58°=32°.
【題型】解答題
【結(jié)束】
25
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,,直線MN分別與x軸、y軸交于點M(6,0),N(0, ),等邊△ABC的頂點B與原點O重合,BC邊落在x軸正半軸上,點A恰好落在線段MN上,將等邊△ABC從圖l的位置沿x軸正方向以每秒l個單位長度的速度平移,邊AB,AC分別與線段MN交于點E,F(如圖2所示),設(shè)△ABC平移的時間為t(s).
(1)等邊△ABC的邊長為_______;
(2)在運動過程中,當t=_______時,MN垂直平分AB;
(3)若在△ABC開始平移的同時.點P從△ABC的頂點B出發(fā).以每秒2個單位長度的速度沿折線BA—AC運動.當點P運動到C時即停止運動.△ABC也隨之停止平移.
①當點P在線段BA上運動時,若△PEF與△MNO相似.求t的值;
②當點P在線段AC上運動時,設(shè),求S與t的函數(shù)關(guān)系式,并求出S的最大值及此時點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com