【題目】數(shù)學(xué)概念
若點(diǎn)在的內(nèi)部,且、和中有兩個(gè)角相等,則稱是的“等角點(diǎn)”,特別地,若這三個(gè)角都相等,則稱是的“強(qiáng)等角點(diǎn)”.
理解概念
(1)若點(diǎn)是的等角點(diǎn),且,則的度數(shù)是 .
(2)已知點(diǎn)在的外部,且與點(diǎn)在的異側(cè),并滿足,作的外接圓,連接,交圓于點(diǎn).當(dāng)的邊滿足下面的條件時(shí),求證:是的等角點(diǎn).(要求:只選擇其中一道題進(jìn)行證明!)
①如圖①,
②如圖②,
深入思考
(3)如圖③,在中,、、均小于,用直尺和圓規(guī)作它的強(qiáng)等角點(diǎn).(不寫(xiě)作法,保留作圖痕跡)
(4)下列關(guān)于“等角點(diǎn)”、“強(qiáng)等角點(diǎn)”的說(shuō)法:
①直角三角形的內(nèi)心是它的等角點(diǎn);
②等腰三角形的內(nèi)心和外心都是它的等角點(diǎn);
③正三角形的中心是它的強(qiáng)等角點(diǎn);
④若一個(gè)三角形存在強(qiáng)等角點(diǎn),則該點(diǎn)到三角形三個(gè)頂點(diǎn)的距離相等;
⑤若一個(gè)三角形存在強(qiáng)等角點(diǎn),則該點(diǎn)是三角形內(nèi)部到三個(gè)頂點(diǎn)距離之和最小的點(diǎn),其中正確的有 .(填序號(hào))
【答案】(1)100、130或160;(2)選擇①或②,理由見(jiàn)解析;(3)見(jiàn)解析;(4)③⑤
【解析】
(1)根據(jù)“等角點(diǎn)”的定義,分類討論即可;
(2)①根據(jù)在同圓中,弧和弦的關(guān)系和同弧所對(duì)的圓周角相等即可證明;
②弧和弦的關(guān)系和圓的內(nèi)接四邊形的性質(zhì)即可得出結(jié)論;
(3)根據(jù)垂直平分線的性質(zhì)、等邊三角形的性質(zhì)、弧和弦的關(guān)系和同弧所對(duì)的圓周角相等作圖即可;
(4)根據(jù)“等角點(diǎn)”和“強(qiáng)等角點(diǎn)”的定義,逐一分析判斷即可.
(1)(i)若=時(shí),
∴==100°
(ii)若時(shí),
∴(360°-)=130°;
(iii)若=時(shí),
360°--=160°,
綜上所述:=100°、130°或160°
故答案為:100、130或160.
(2)選擇①:
連接
∵
∴
∴
∵,
∴
∴是的等角點(diǎn).
選擇②
連接
∵
∴
∴
∵四邊形是圓的內(nèi)接四邊形,
∴
∵
∴
∴是的等角點(diǎn)
(3)作BC的中垂線MN,以C為圓心,BC的長(zhǎng)為半徑作弧交MN與點(diǎn)D,連接BD,
根據(jù)垂直平分線的性質(zhì)和作圖方法可得:BD=CD=BC
∴△BCD為等邊三角形
∴∠BDC=∠BCD=∠DBC=60°
作CD的垂直平分線交MN于點(diǎn)O
以O為圓心OB為半徑作圓,交AD于點(diǎn)Q,圓O即為△BCD的外接圓
∴∠BQC=180°-∠BDC=120°
∵BD=CD
∴∠BQD=∠CQD
∴∠BQA=∠CQA=(360°-∠BQC)=120°
∴∠BQA=∠CQA=∠BQC
如圖③,點(diǎn)即為所求.
(4)③⑤.
①如下圖所示,在RtABC中,∠ABC=90°,O為△ABC的內(nèi)心
假設(shè)∠BAC=60°,∠ACB=30°
∵點(diǎn)O是△ABC的內(nèi)心
∴∠BAO=∠CAO=∠BAC=30°,∠ABO=∠CBO=∠ABC=45°,∠ACO=∠BCO=∠ACB=15°
∴∠AOC=180°-∠CAO-∠ACO=135°,∠AOB=180°-∠BAO-∠ABO=105°,∠BOC=180°-∠CBO-∠BCO=120°
顯然∠AOC≠∠AOB≠∠BOC,故①錯(cuò)誤;
②對(duì)于鈍角等腰三角形,它的外心在三角形的外部,不符合等角點(diǎn)的定義,故②錯(cuò)誤;
③正三角形的每個(gè)中心角都為:360°÷3=120°,滿足強(qiáng)等角點(diǎn)的定義,所以正三角形的中心是它的強(qiáng)等角點(diǎn),故③正確;
④由(3)可知,點(diǎn)Q為△ABC的強(qiáng)等角,但Q不在BC的中垂線上,故QB≠QC,故④錯(cuò)誤;
⑤由(3)可知,當(dāng)的三個(gè)內(nèi)角都小于時(shí),必存在強(qiáng)等角點(diǎn).
如圖④,在三個(gè)內(nèi)角都小于的內(nèi)任取一點(diǎn),連接、、,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)到,連接,
∵由旋轉(zhuǎn)得,,
∴是等邊三角形.
∴
∴
∵、是定點(diǎn),
∴當(dāng)、、、四點(diǎn)共線時(shí),最小,即最。
而當(dāng)為的強(qiáng)等角點(diǎn)時(shí),,
此時(shí)便能保證、、、四點(diǎn)共線,進(jìn)而使最小.
故答案為:③⑤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)F從菱形ABCD的頂點(diǎn)A出發(fā),沿A→D→B以1cm/s的速度勻速運(yùn)動(dòng)到點(diǎn)B,圖2是點(diǎn)F運(yùn)動(dòng)時(shí),△FBC的面積y(cm2)隨時(shí)間x(s)變化的關(guān)系圖象,則a的值為( )
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】跳繩是大家喜聞樂(lè)見(jiàn)的一項(xiàng)體育運(yùn)動(dòng),集體跳繩時(shí),需要兩人同頻甩動(dòng)繩子,當(dāng)繩子甩到最高處時(shí),其形狀可近似看作拋物線.如圖是小明和小亮甩繩子到最高處時(shí)的示意圖,兩人拿繩子的手之間的距離為,離地面的高度為,以小明的手所在位置為原點(diǎn),建立平面直角坐標(biāo)系.
(1)當(dāng)身高為的小紅站在繩子的正下方,且距小明拿繩子手的右側(cè)處時(shí),繩子剛好通過(guò)小紅的頭頂,求繩子所對(duì)應(yīng)的拋物線的表達(dá)式;
(2)若身高為的小麗也站在繩子的正下方.
①當(dāng)小麗在距小亮拿繩子手的左側(cè)處時(shí),繩子能碰到小麗的頭嗎?請(qǐng)說(shuō)明理由;
③設(shè)小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,求的取值范圍.(參考數(shù)據(jù):取3.16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的與的部分對(duì)應(yīng)值如表:
下列結(jié)論:①拋物線的開(kāi)口向上;②拋物線的對(duì)稱軸為直線;③當(dāng)時(shí),;④拋物線與軸的兩個(gè)交點(diǎn)間的距離是;⑤若是拋物線上兩點(diǎn),則;⑥. 其中正確的個(gè)數(shù)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,點(diǎn)、都在射線上,,,是射線上的一個(gè)動(dòng)點(diǎn),過(guò)、、三點(diǎn)作圓,當(dāng)該圓與相切時(shí),其半徑的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D為AC中點(diǎn),點(diǎn)E在BD延長(zhǎng)線上,且BD:DE=3:5,連接CE,tan∠BAC=,CB=,則線段EC長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形中,,為邊的中點(diǎn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn),點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為,過(guò)點(diǎn)作交于點(diǎn),連接、交于點(diǎn),現(xiàn)有下列結(jié)論:①;②;③;④點(diǎn)為的外心.其中正確的是( )
A.①④B.①③C.③④D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=4cm,點(diǎn)P從點(diǎn)A出發(fā)以lcm/s的速度沿折線AC﹣CB運(yùn)動(dòng),過(guò)點(diǎn)P作PQ⊥AB于點(diǎn)Q,當(dāng)點(diǎn)P不與點(diǎn)A、B重合時(shí),以線段PQ為邊向右作正方形PQRS,設(shè)正方形PQRS與△ABC的重疊部分面積為S,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)用含t的代數(shù)式表示CP的長(zhǎng)度;
(2)當(dāng)點(diǎn)S落在BC邊上時(shí),求t的值;
(3)當(dāng)正方形PQRS與△ABC的重疊部分不是五邊形時(shí),求S與t之間的函數(shù)關(guān)系式;
(4)連結(jié)CS,當(dāng)直線CS分△ABC兩部分的面積比為1:2時(shí),直接寫(xiě)出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果經(jīng)銷商到水果種植基地采購(gòu)葡萄,經(jīng)銷商一次性采購(gòu)葡萄的采購(gòu)單價(jià)(元/千克)與采購(gòu)量(千克)之間的函數(shù)關(guān)系圖象如圖中折線所示(不包括端點(diǎn)).
(1)當(dāng)時(shí),寫(xiě)出與之間的函數(shù)關(guān)系式;
(2)葡萄的種植成本為8元/千克,某經(jīng)銷商一次性采購(gòu)葡萄的采購(gòu)量不超過(guò)1000千克,當(dāng)采購(gòu)量是多少時(shí),水果種植基地獲利最大,最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com