【題目】如圖,在正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:.
(2)若AB=12,BM=5,求DE的長.
【答案】(1)見解析;(2)DE=
【解析】
(1)根據(jù)正方形的性質(zhì)得AD∥BC,AD=AB,∠B=90°,再證明Rt△ABM∽Rt△EFA,利用相似比和比例的性質(zhì)可得到結(jié)論;
(2)先利用勾股定理計算出AM=13,則AF=,由于Rt△ABM∽Rt△EFA,則利用相似比可計算出AE,然后計算AE﹣AD即可.
(1)證明:∵四邊形ABCD為正方形,
∴AD∥BC,AD=AB,∠B=90°,
∴∠AMB=∠MAD,
∵EF⊥AM,
∴∠AFE=90°,
∴Rt△ABM∽Rt△EFA,
∴AB:EF=AM:AE,
即AD:EF=AM:AE,
∴ADAE=AMEF;
(2)解:在Rt△ABM中,AM==13,
∵F是AM的中點,
∴AF=AM=,
∵Rt△ABM∽Rt△EFA,
∴,即,
∴AE=,
∴DE=AE﹣AD=﹣12═.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為正方形ABCD對角線上一點,以點O為圓心,OA長為半徑的
⊙ O與BC相切于點E.
(1)求證:CD是⊙ O的切線;
(2)若正方形ABCD的邊長為10,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=3,AC=4,△ADE的頂點D在BC上運動,且∠DAE=90°,∠ADE=∠B,F為線段DE的中點,連接CF,在點D運動過程中,線段CF長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程(a+1)x2+2bx+(a+1)=0有兩個相等的實數(shù)根,下列判斷正確的是( 。
A. 1一定不是關于x的方程x2+bx+a=0的根
B. 0一定不是關于x的方程x2+bx+a=0的根
C. 1和﹣1都是關于x的方程x2+bx+a=0的根
D. 1和﹣1不都是關于x的方程x2+bx+a=0的根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.
(1)求BC的長;
(2)若∠CBE=36°,求∠ADC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的是某地區(qū)今年4月份的囗平均氣溫的頻數(shù)分布直方圖(直方圖中每一組數(shù)都包括前一個邊界值,不包括后一個邊界值),則下列結(jié)論中錯誤的是( )
A.該地區(qū)4月份的口平均氣溫在18℃以上(含18℃)的共有10天
B.該直方圖的組距是4℃
C.該地區(qū)4月份的口平均氣溫的最大值至少是22℃
D.該直方圖中口平均氣溫為6~10℃的這一組數(shù)的頻數(shù)為3,頻率為0.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,.
(Ⅰ)如圖Ⅰ,為邊上一點(不與點重合),將線段繞點逆時針旋轉(zhuǎn)得到,連接.
求證:(1);
(2).
(Ⅱ)如圖Ⅱ,為外一點,且,仍將線段繞點逆時針旋轉(zhuǎn)得到,連接,.
(1)的結(jié)論是否仍然成立?并請你說明理由;
(2)若,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖一座拱橋的示意圖,已知橋洞的拱形是拋物線.當水面寬為12m時,橋洞頂部離水面4m.、
(1)建立平面直角坐標系,并求該拋物線的函數(shù)表達式;
(2)若水面上升1m,水面寬度將減少多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com