【題目】如圖1,Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),∠EDF=90°,DE交AC于點(diǎn)G,DF經(jīng)過(guò)點(diǎn)C.
(1)若∠B=60°.
①求∠ADE的度數(shù);
②如圖2,將圖1中的∠EDF繞點(diǎn)D順時(shí)針?lè)较蛐D(zhuǎn)角α(0°<α<60°),旋轉(zhuǎn)過(guò)程中的任意兩個(gè)位置分別記為∠E1DF1,∠E2DF2,DE1交直線AC于點(diǎn)P,DF1交直線BC于點(diǎn)Q,DE2交直線AC于點(diǎn)M,DF2交直線BC于點(diǎn)N,求的值;
(2)將(1)問(wèn)中的“若∠B=60°”改為“∠B=β(60°<β<90°)”,其余條件不變,判斷的值是否為定值,如果是,請(qǐng)直接寫(xiě)出這個(gè)值(用含β的式子表示);如果不是,請(qǐng)說(shuō)明理由.
【答案】(1)①∠ADE=30°;②(2)見(jiàn)試題解析.
【解析】
試題分析:(1)根據(jù)含30°的直角三角形的性質(zhì)和等邊三角形的性質(zhì)解答即可;
(2)根據(jù)相似三角形的判定和性質(zhì)以及直角三角形中的三角函數(shù)解答即可;
(3)由(2)的推理得出,再利用直角三角形的三角函數(shù)解答.
試題解析:(1)①∵∠ACB=90°,D為AB的中點(diǎn),∴CD=DB,∴∠DCB=∠B,
∵∠B=60°,∴∠DCB=∠B=∠CDB=60°,∴∠CDA=120°,∵∠EDC=90°,
∴∠ADE=30°;
②∵∠C=90°,∠MDN=90°,
∴∠DMC+∠CND=180°,
∵∠DMC+∠PMD=180°,
∴∠CND=∠PMD,
同理∠CPD=∠DQN,
∴△PMD∽△QND,
過(guò)點(diǎn)D分別做DG⊥AC于G,DH⊥BC于H,
可知DG,DH分別為△PMD和△QND的高,∴=,∵DG⊥AC于G,DH⊥BC于H,∴DG∥BC,又∵D為AC中點(diǎn),∴G為AC中點(diǎn),∵∠C=90°,∴四邊形CGDH 為矩形有CG=DH=AG,
Rt△AGD中, =,即=.
(2)是定值,定值為tan(90°﹣β),∵=,四邊形CGDH 為矩形有CG=DH=AG,
∴Rt△AGD中, =tan∠A=tan(90°﹣∠B)=tan(90°﹣β),∴=tan(90°﹣β).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】雙曲線y=(x>0)與直線y=x在坐標(biāo)系中的圖象如圖所示,點(diǎn)A、B在直線上AC、BD分別平行y軸,交曲線于C、D兩點(diǎn),若BD=2AC,則4OC2﹣OD2的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小雨寫(xiě)了幾個(gè)多項(xiàng)式,其中是五次三項(xiàng)式的是( )
A. y5-1 B. 5x2y2-x+y C. 3a2b2c-ab+1 D. 3a5b-b+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 三點(diǎn)確定一個(gè)圓 B. 經(jīng)過(guò)圓心的直線是圓的對(duì)稱(chēng)軸
C. 一條弦所對(duì)的圓周角等于圓心角的一半 D. 三角形的外心到三角形三邊距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于任意正實(shí)數(shù)a、b,因?yàn)?/span>≥0,所以a﹣≥0,所以a+b≥,只有當(dāng)a=b時(shí),等號(hào)成立.
【獲得結(jié)論】在a+b≥2(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2,只有當(dāng)a=b時(shí),a+b有最小值2.
根據(jù)上述內(nèi)容,回答下列問(wèn)題:若m>0,只有當(dāng)m= 時(shí),m+有最小值 .
【探索應(yīng)用】如圖,已知A(﹣3,0),B(0,﹣4),P為雙曲線上的任意一點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D.求四邊形ABCD面積的最小值,并說(shuō)明此時(shí)四邊形ABCD的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式從左到右的變形是因式分解的是( )
A.x2+2x+3=(x+1)2+2
B.(x+y)(x﹣y)=x2﹣y2
C.x2﹣xy+y2=(x﹣y)2
D.2x﹣2y=2(x﹣y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列長(zhǎng)度的三條線段能組成三角形的是( )
A.3,4,8
B.5,6,11
C.5,6,10
D.1,2,3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com