【題目】活動1:
在一只不透明的口袋中裝有標號為1,2,3的3個小球,這些球除標號外都相同,充分攪勻,甲、乙、丙三位同學丙→甲→乙的順序依次從袋中各摸出一個球(不放回),摸到1號球勝出,計算甲勝出的概率.(注:丙→甲→乙表示丙第一個摸球,甲第二個摸球,乙最后一個摸球)
(1)活動1:
在一只不透明的口袋中裝有標號為1,2,3的3個小球,這些球除標號外都相同,充分攪勻,甲、乙、丙三位同學丙→甲→乙的順序依次從袋中各摸出一個球(不放回),摸到1號球勝出,計算甲勝出的概率.(注:丙→甲→乙表示丙第一個摸球,甲第二個摸球,乙最后一個摸球)
(2)活動2:
在一只不透明的口袋中裝有標號為1,2,3,4的4個小球,這些球除標號外都相同,充分攪勻,請你對甲、乙、丙三名同學規(guī)定一個摸球順序: , 他們按這個順序從袋中各摸出一個球(不放回),摸到1號球勝出,則第一個摸球的同學勝出的概率等于 ,最后一個摸球的同學勝出的概率等于
(3)猜想:
在一只不透明的口袋中裝有標號為1,2,3,…,n(n為正整數(shù))的n個小球,這些球除標號外都相同,充分攪勻,甲、乙、丙三名同學從袋中各摸出一個球(不放回),摸到1號球勝出,猜想:這三名同學每人勝出的概率之間的大小關(guān)系.
你還能得到什么活動經(jīng)驗?(寫出一個即可)

【答案】
(1)

解:如圖1

甲勝出的概率為:

P(甲勝出)=


(2)丙→甲→乙;
(3)

這三名同學每人勝出的概率之間的大小關(guān)系為:

P(甲勝出)=P(乙勝出)=P(丙勝出).

得到的活動經(jīng)驗為:抽簽是公平的,與順序無關(guān).(答案不唯一)

故答案為:丙、甲、乙、.


【解析】(1)應(yīng)用樹狀圖法,判斷出甲勝出的概率是多少即可.
(2)首先對甲、乙、丙三名同學規(guī)定一個摸球順序:丙→甲→乙,然后應(yīng)用樹狀圖法,判斷出第一個摸球的丙同學和最后一個摸球的乙同學勝出的概率各等于多少即可.
(3)首先根據(jù)(1)(2),猜想這三名同學每人勝出的概率之間的大小關(guān)系為:P(甲勝出)=P(乙勝出)=P(丙勝出);然后總結(jié)出得到的活動經(jīng)驗為:抽簽是公平的,與順序無關(guān).
【考點精析】解答此題的關(guān)鍵在于理解列表法與樹狀圖法的相關(guān)知識,掌握當一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,坐標平面上,二次函數(shù)y=﹣x2+4x﹣k的圖形與x軸交于A,B兩點,與y軸交于C點,其頂點為D,且k>0,若△ABC與△ABD的面積比為1:4,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點P是斜邊AB的中點,點M從點C向點A勻速運動,點N從點B向點C勻速運動,已知兩點同時出發(fā),同時到達終點,連接PM、PN、MN,在整個運動過程中,△PMN的面積S與運動時間t的函數(shù)關(guān)系圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人在100米直道AB上練習勻速往返跑,若甲、乙分別中A,B兩端同時出發(fā),分別到另一端點處掉頭,掉頭時間不計,速度分別為5m/s和4m/s.
(1)在坐標系中,虛線表示乙離A端的距離s(單位:m)與運動時間t(單位:s)之間的函數(shù)圖象(0≤t≤200),請在同一坐標系中用實線畫出甲離A端的距離s與運動時間t之間的函數(shù)圖象(0≤t≤200);

(2)根據(jù)(1)中所畫圖象,完成下列表格:

兩人相遇次數(shù)
(單位:次)

1

2

3

4

n

兩人所跑路程之和
(單位:m)

100

300

 


(3)①直接寫出甲、乙兩人分別在第一個100m內(nèi),s與t的函數(shù)解析式,并指出自變量t的取值范圍;
②當t=390s時,他們此時相遇嗎?若相遇,應(yīng)是第幾次?若不相遇,請通過計算說明理由,并求出此時甲離A端的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△DBC是兩個具有公共邊的全等三角形,AB=AC=3cm.BC=2cm,將△DBC沿射線BC平移一定的距離得到△D1B1C1 , 連接AC1 , BD1 . 如果四邊形ABD1C1是矩形,那么平移的距離為 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【發(fā)現(xiàn)】如圖∠ACB=∠ADB=90°,那么點D在經(jīng)過A,B,C三點的圓上(如圖①)

(1)【思考】如圖②,如果∠ACB=∠ADB=a(a≠90°)(點C,D在AB的同側(cè)),那么點D還在經(jīng)過A,B,C三點的圓上嗎?
請證明點D也不在⊙O內(nèi).
(2)【應(yīng)用】
利用【發(fā)現(xiàn)】和【思考】中的結(jié)論解決問題:
若四邊形ABCD中,AD∥BC,∠CAD=90°,點E在邊AB上,CE⊥DE.
(1)作∠ADF=∠AED,交CA的延長線于點F(如圖④),求證:DF為Rt△ACD的外接圓的切線;

(2)如圖⑤,點G在BC的延長線上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將ABCD沿過點A的直線l折疊,使點D落到AB邊上的點D′處,折痕l交CD邊于點E,連接BE.

(1)求證:四邊形BCED′是平行四邊形。
(2)若BE平分∠ABC,求證:AB2=AE2+BE2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)|﹣4|﹣20150+(1﹣(2
(2)(1+)÷

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,△ABE經(jīng)旋轉(zhuǎn),可與△CBF重合,AE的延長線交FC于點M,以下結(jié)論正確的是(

A.AM⊥FC
B.BF⊥CF
C.BE=CE
D.FM=MC

查看答案和解析>>

同步練習冊答案