如圖,△ABC在直角坐標(biāo)系中, AB=AC,A(0,2),C(1,0), D為射線AO上一點(diǎn),一動點(diǎn)P從A出發(fā),運(yùn)動路徑為A→D→C,點(diǎn)P在AD上的運(yùn)動速度是在CD上的3倍,要使整個運(yùn)動時間最少,則點(diǎn)D的坐標(biāo)應(yīng)為(    )
A.(0,)B.(0,)C.(0,)D.(0,)
D.

試題分析:設(shè)D點(diǎn)坐標(biāo)為(0,e),設(shè)P點(diǎn)在CD和AD上速度相同,但路程拉長為3CD,也就是把DC延長至F,DF=3CD。利用相似三角形求出e的值為.所以D點(diǎn)坐標(biāo)為(0,
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,點(diǎn)E從點(diǎn)A出發(fā)沿AB以每秒1cm的速度向點(diǎn)B運(yùn)動,同時點(diǎn)D從點(diǎn)C出發(fā)沿CA以每秒2cm的速度向點(diǎn)A運(yùn)動,運(yùn)動時間為t秒(0<t<6),過點(diǎn)D作DF⊥BC于點(diǎn)F.
(1)試用含t的式子表示AE、AD的長;
(2)如圖①,在D、E運(yùn)動的過程中,四邊形AEFD是平行四邊形,請說明理由;
(3)如圖②,連接DE,當(dāng)t為何值時,△DEF為直角三角形?
(4)如圖③,將△ADE沿DE翻折得到△A′DE,試問當(dāng)t為何值時,四邊形AEA′D為菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,∠ABC=45°,過點(diǎn)C作CD⊥AB于點(diǎn)D,過點(diǎn)B作BM⊥AC于點(diǎn)M,BM交CD于點(diǎn)E,且點(diǎn)E為CD的中點(diǎn),連接MD,過點(diǎn)D作ND⊥MD于點(diǎn)D,DN交BM于點(diǎn)N.
(1)若BC=,求△BDE的周長;
(2)求證:NE-ME=CM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)D,E在△ABC的邊BC上,連 接AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三個等式中的兩個作為命題的題設(shè),另一個作為命題的結(jié)論,構(gòu)成三個命題:①②?③:①③?②;②③?①.
(1)以上三個命題是真命題的為(直接作答)                         
(2)請選擇一個真命題進(jìn)行證明(先寫出所選命題,然后證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,O是△ABC的∠ABC.∠ACB的角平分線的交點(diǎn),OD∥AB交BC于D,OE∥AC交BC于E,若BC = 10,則△ODE的周長為       .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知一個等腰三角形有一個角為50o,則頂角是 ( )
A.50oB.80oC.50o或80oD.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ACB≌△A1CB1, ∠BCB1=30°,則∠ACA1的度數(shù)為(  )
A.20°B.30°C.35°D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,小亮從A點(diǎn)出發(fā)前進(jìn)10m,向右轉(zhuǎn)15°,再前進(jìn)10m,又向右轉(zhuǎn)15°……,這樣一直走下去,他第一次回到出發(fā)點(diǎn)A時,一共走了______________m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

按如圖方式作正方形和等腰直角三角形.若第一個正方形的邊長AB=1,第一個正方形與第一個等腰直角三角形的面積和為S1,第二個正方形與第二個等腰直角三角形的面積和為S2,…,則第n個正方形與第n個等腰直角三角形的面積和Sn=  

查看答案和解析>>

同步練習(xí)冊答案