【題目】如圖,RtABC,ACB=90°,CDAB,垂足為D,AF平分∠CAB,CD于點E,CB于點F.AC=6,AB=10,DE的長為______

【答案】

【解析】

由直角三角形的面積求出CD,根據(jù)直角三角形的性質(zhì)得出∠CAF+CFA=90°,∠FAD+AED=90°,根據(jù)角平分線和對頂角相等得出∠CEF=CFE,即可得出EC=FC,再利用相似三角形的判定與性質(zhì)和角平分線的性質(zhì)求出FC,即可得出答案.

解:過點FFGAB于點G,

RtABC中,∠ACB=90°,∠AC=6,AB=10,則由勾股定理知:

BC===8
ACBC=ABCD,則CD==
∵∠ACB=90°CDAB,
∴∠CDA=90°
∴∠CAF+CFA=90°,∠FAD+AED=90°
AF平分∠CAB,
∴∠CAF=FAD,
∴∠CFA=AED=CEF,
CE=CF,
AF平分∠CAB,∠ACF=AGF=90°,
FC=FG,
∵∠B=B,∠FGB=ACB=90°,
∴△BFG∽△BAC
,
AC=6AB=10,BC=8FC=FG,

解得:FC=3,即CE的長為3
DE=CD-CE=-3=
故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于檢修部分生產(chǎn)設(shè)備,生產(chǎn)能力下降,某工廠現(xiàn)在比原計劃平均每天少生產(chǎn)30臺機器,現(xiàn)在生產(chǎn)600臺機器所需時間與原計劃生產(chǎn)900臺機器所需時間相同.

問現(xiàn)在平均每天生產(chǎn)多少臺機器.

1)設(shè)現(xiàn)在平均每天生產(chǎn)臺機器,則用含的式子表示;

原計劃平均每天生產(chǎn)______臺機器,現(xiàn)在生產(chǎn)600臺機器所需時間為______天,原計劃生產(chǎn)900臺機器所需時間為______天;

2)列出方程,完成本題解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

云陽縣多集合生態(tài)農(nóng)業(yè)有限公司在2018年種植玉米的平均畝產(chǎn)量為0. 75噸,該公司總結(jié)了種植玉米的經(jīng)驗,2019年該公司種植玉米的情況是:種植面積比2018年減少了10%、平均畝產(chǎn)量比2018年增加了0. 2噸,總產(chǎn)量比2018年增加了8. 4.

1)求2018年該公司種植玉米的面積;

2)若2019年該公司種植玉米的人數(shù)比2018年少了12人,人均種植面積比2018年增加了17%,求2019年該公司種植玉米的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為獎勵優(yōu)秀學(xué)生,某校準(zhǔn)備購買一批文具袋和圓規(guī)作為獎品,已知購買1個文具袋和2個圓規(guī)需21元,購買2個文具袋和3個圓規(guī)需39元。

1)求文具袋和圓規(guī)的單價。

2)學(xué)校準(zhǔn)備購買文具袋20個,圓規(guī)若干,文具店給出兩種優(yōu)惠方案:

方案一:購買一個文具袋還送1個圓規(guī)。

方案二:購買圓規(guī)10個以上時,超出10個的部分按原價的八折優(yōu)惠,文具袋不打折.

①設(shè)購買面規(guī)m個,則選擇方案一的總費用為______,選擇方案二的總費用為______.

②若學(xué)校購買圓規(guī)100個,則選擇哪種方案更合算?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,BC6,AB、AC的垂直平分線分別交邊BC于點M、N,若MN2,則△AMN的周長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EFGH(線段端點在格點上),

選取其中三條線段,使得這三條線段能圍成一個直角三角形.

答:選取的三條線段為

只變動其中兩條線段的位置,在原圖中畫出一個滿足上題的直角三角形(頂點仍在格點,并標(biāo)上必要的字母).

答:畫出的直角三角形為△

所畫直角三角形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABBCAC12cm,現(xiàn)有兩點M、N分別從點A.點B同時出發(fā),沿三角形的邊運動,已知點M的速度為2cm/s,點N的速度為3cm/s.當(dāng)點N第一次到達B點時,MN同時停止運動.

1)點M、N運動   秒后,△AMN是等邊三角形?

2)點M、NBC邊上運動時,運動   秒后得到以MN為底邊的等腰三角形△AMN?

3M、N同時運動幾秒后,△AMN是直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.

(1)求A,B兩點的坐標(biāo);

(2)過B點作直線BP與x軸相交于P,且使OP=2OA, 求ΔABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】京張高鐵是2022年北京冬奧會的重要交通保障設(shè)施.如圖,京張高鐵起自北京北站,途經(jīng)清河、沙河、昌平等站,終點站為張家口南站,全長174千米.根據(jù)資料顯示,京張高鐵在某次測試中的平均時速是現(xiàn)運行的京張鐵路某字頭列車平均時速的6倍,全程行駛時間減少了122分鐘,且每站(不計起始站和終點站)?康钠骄鶗r間也減少了3.5分鐘.請求出此次測試中京張高鐵的平均時速是多少.

(注:平均時速的測算公式為

查看答案和解析>>

同步練習(xí)冊答案