【題目】如圖,已知一次函數(shù)y=﹣x+n的圖象與反比例函數(shù)y的圖象交于A4,﹣2),B(﹣2,m)兩點.

1)請直接寫出不等式﹣x+n≤的解集;

2)求反比例函數(shù)和一次函數(shù)的解析式;

3)過點Ax軸的垂線,垂足為C,連接BC,求ABC的面積.

【答案】1)﹣2≤x0x≥4;(2y=﹣,y=﹣x+2;(36

【解析】

1)根據(jù)圖像即可得到答案;

2)將點A4,﹣2),B(﹣2,m)的坐標(biāo)分別代入解析式即可得到答案;

(3) 過點BBDAC,根據(jù)點A、B的坐標(biāo)求得AC、BD的長度,即可求得圖形面積.

解:(1)由圖象可知:不等式﹣x+n≤的解集為﹣2≤x0x≥4;

2)∵一次函數(shù)y=﹣x+n的圖象與反比例函數(shù)y的圖象交于A4,﹣2),B(﹣2,m)兩點.

k(﹣2)=﹣2m,﹣2=﹣4+n

解得m4,k=﹣8,n2,

∴反比例函數(shù)和一次函數(shù)的解析式分別為y=﹣y=﹣x+2;

3)由(2)知B(-2,4),

過點B作BD⊥AC,交AC的延長線于D,

A4,﹣2),B(-2,4),

AC=2BD=2+4=6,

SABC.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AE是角平分線,BM平分∠ABCAE于點M,經(jīng)過B、M兩點的⊙OBC于點G,交AB于點F,F(xiàn)B恰為⊙O的直徑.

(1)判斷AE與⊙O的位置關(guān)系,并說明理由;

(2)若BC=6,AC=4CE時,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,坐標(biāo)原點為O,A點坐標(biāo)為(4,0),B點坐標(biāo)為(1,0),以AB的中點P為圓心,AB為直徑作⊙Py軸的負(fù)半軸交于點C

1)求經(jīng)過AB、C三點的拋物線對應(yīng)的函數(shù)表達(dá)式;

2)設(shè)M為(1)中拋物線的頂點,試說明直線MC與⊙P的位置關(guān)系,并證明你的結(jié)論;

3)在第二象限中是否存在的一點Q,使得以A,OQ為頂點的三角形與OBC相似.若存在,請求出所有滿足的Q點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在RtABC中,∠ACB90°,∠A30°,點OAB中點,點P為直線BC上的動點(不與B、C重合),連接OC、OP,將OP繞點P順時針旋轉(zhuǎn)60°,得到線段PQ,連接BQ,若∠BPO15°,BP4,則BQ的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線yax2+bx+cx軸交于A、B兩點,A(﹣5,0),與y軸交于C0,﹣5),并且對稱軸x=﹣3

1)求拋物線的解析式;

2Px軸上方的拋物線上,過P的直線yx+m與直線AC交于點M,與y軸交于點N,求PM+MN的最大值;

3)點D為拋物線對稱軸上一點,

①當(dāng)△ACD是以AC為直角邊的直角三角形時,求D點坐標(biāo);

②若△ACD是銳角三角形,求點D的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,ABAC,∠A20°.AB上一點D,使ADBC,過點DDEBCDEAB,連接EC,則∠DCE_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究:

已知二次函數(shù)y=﹣x2+x+2的圖象與x軸交于A,B兩點(點B在點A的左側(cè)),與y軸交于點C

1)求點A,B,C的坐標(biāo);

2)求證:ABC為直角三角形;

3)如圖,動點E,F同時從點A出發(fā),其中點E以每秒2個單位長度的速度沿AB邊向終點B運動,點F以每秒個單位長度的速度沿射線AC方向運動.當(dāng)點F停止運動時,點E隨之停止運動.設(shè)運動時間為t秒,連結(jié)EF,將AEF沿EF翻折,使點A落在點D處,得到DEF.當(dāng)點FAC上時,是否存在某一時刻t,使得DCO≌△BCO?(點D不與點B重合)若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中 過點A作AEDC,垂足為E,連接BE,F(xiàn)為BE上一點,且AFE=D.

(1)求證:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于兩點.

1)試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)求的面積.

3)根據(jù)圖象寫出反比例函數(shù)y≥nx取值范圍

查看答案和解析>>

同步練習(xí)冊答案