【題目】某次數(shù)學(xué)測(cè)驗(yàn),共16個(gè)選擇題,評(píng)分標(biāo)準(zhǔn)為:;對(duì)一題給6分,錯(cuò)一題扣2分,不答不給分。某個(gè)學(xué)生有1題未答,他想自己的分?jǐn)?shù)不低于70分,他至少要對(duì)多少題?

【答案】13

【解析】試題分析:設(shè)他要對(duì)x題,則錯(cuò)(15-x)題,依題意分?jǐn)?shù)不低于70分,表示出他得到分?jǐn)?shù)大于等于70,解不等式,取最小整數(shù)即可.

試題解析:設(shè)他要對(duì)x題,依題意得:
6x-2(15-x)≥70,
解之得x≥12.5;
因?yàn)轭}數(shù)應(yīng)該是整數(shù),所以至少要對(duì)13題.
答:至少要對(duì)13題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一組數(shù)據(jù)1,23,x,0,3,2的眾數(shù)是3,則這組數(shù)據(jù)的中位數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋擲一枚質(zhì)地均勻、六個(gè)面上分別刻有點(diǎn)數(shù)1~6的正方體骰子2次,則向上一面的點(diǎn)數(shù)之和為10”是(

A. 必然事件B. 不可能事件C. 確定事件D. 隨機(jī)事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y3x2向左平移2個(gè)單位,再向下平移1個(gè)單位,所得拋物線為( )

A. y3(x2)21 B. y3(x2)21 C. y3(x2)21 D. y3(x2)21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(4x2-5y)需乘以下列哪個(gè)式子,才能使用平方差公式進(jìn)行計(jì)算( ) w
A.-4x2-5y
B.-4x2+5y
C.(4x2-5y)2
D.(4x+5y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于任意的正整數(shù)n , 能整除代數(shù)式(3n+1)(3n-1)-(3-n)(3+n)的整數(shù)是(
A.3
B.6
C.10
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bxc經(jīng)過ABC的三個(gè)頂點(diǎn),與y軸相交于(0, ),點(diǎn)A坐標(biāo)為(1,2),點(diǎn)B是點(diǎn)A關(guān)于y軸的對(duì)稱點(diǎn),點(diǎn)Cx軸的正半軸上.

1求該拋物線的函數(shù)解析式;

2點(diǎn)F為線段AC上一動(dòng)點(diǎn),過點(diǎn)FFEx軸,FGy軸,垂足分別為點(diǎn)E,G,當(dāng)四邊形OEFG為正方形時(shí),求出點(diǎn)F的坐標(biāo);

32中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點(diǎn)E和點(diǎn)C重合時(shí)停止運(yùn)動(dòng),設(shè)平移的距離為t,正方形的邊EFAC交于點(diǎn)M,DG所在的直線與AC交于點(diǎn)N,連接DM,是否存在這樣的t,使DMN是等腰三角形?若存在,求t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位急需用車,但不準(zhǔn)備買車,他們準(zhǔn)備和一個(gè)體車主或一國營出租車公司中的一家簽訂合同,設(shè)汽車每月行駛x km,應(yīng)付給個(gè)體車主的月租費(fèi)是元,應(yīng)付給國營出租車公司的月租費(fèi)是元, 分別與之間的函數(shù)關(guān)系的圖象(兩條射線)如圖所示,觀察圖象,回答下列問題.

(1)分別寫出 之間的函數(shù)關(guān)系式;

(2)每月行駛的路程在什么范圍內(nèi)時(shí),租國營公司的車合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

問題:如圖1,在△中,點(diǎn)的中點(diǎn),求證: 小明提供了他研究這個(gè)問題的思路:從點(diǎn)的中點(diǎn)出發(fā),可以構(gòu)造以、為鄰邊的平行四邊形,結(jié)合平行四邊形的性質(zhì)以及三角形兩邊之和大于第三邊的性質(zhì)便可解決這個(gè)問題.請(qǐng)結(jié)合小明研究問題的思路,解決下列問題:

(1)完成上面問題的解答;

(2)如果在圖1中,∠=60°,延長,使得,延長,使得,連結(jié),如圖2. 請(qǐng)猜想線段與線段之間的數(shù)量關(guān)系.并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案