【題目】如圖,在△ABC中.ABAC,ADBCD,作DEACE,FAB中點(diǎn),連EFAD于點(diǎn)G

(1)求證:AD2ABAE;

(2)AB3,AE2,求的值.

【答案】(1)證明見(jiàn)解析;(2).

【解析】

1)只要證明DAE∽△CAD,可得推出AD2=ABAE,即可解決問(wèn)題;

2)利用直角三角形斜邊中線定理求出DF,再根據(jù)DFAC,可得

由此即可解決問(wèn)題;

(1)證明:∵ADBCD,作DEACE,

∴∠ADC=∠AED90°

∵∠DAE=∠DAC,

∴△DAE∽△CAD,

AD2ACAE,

ACAB,

AD2ABAE

(2)解:如圖,連接DF

AB3,∠ADB90°,BFAF,

ABAC,ADBC

BDDC,

DFAC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣x2+2xx軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D,對(duì)稱(chēng)軸與x軸交于點(diǎn)E,直線CE交拋物線于點(diǎn)F(異于點(diǎn)C),直線CDx軸交于點(diǎn)G

(1)如圖1,求直線CE的解析式和頂點(diǎn)D的坐標(biāo);

(2)如圖1,點(diǎn)P為直線CF上方拋物線上一點(diǎn),連接PC、PF,當(dāng)△PCF的面積最大時(shí),點(diǎn)M是過(guò)P垂直于x軸的直線l上一點(diǎn),點(diǎn)N是拋物線對(duì)稱(chēng)軸上一點(diǎn),求FM+MN+NO的最小值;

(3)如圖2,過(guò)點(diǎn)DDIDGx軸于點(diǎn)I,將△GDI沿射線GB方向平移至△G′D′I′處,將△G′D′I′繞點(diǎn)D′逆時(shí)針旋轉(zhuǎn)α(0α180°),當(dāng)旋轉(zhuǎn)到一定度數(shù)時(shí),點(diǎn)G′會(huì)與點(diǎn)I重合,記旋轉(zhuǎn)過(guò)程中的△G′D′I′為△G″D′I″,若在整個(gè)旋轉(zhuǎn)過(guò)程中,直線G″I″分別交x軸和直線GD′于點(diǎn)KL兩點(diǎn),是否存在這樣的K、L,使△GKL為以∠LGK為底角的等腰三角形?若存在,求此時(shí)GL的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀例題,回答問(wèn)題:

例題:已知二次三項(xiàng)式:x24x+m有一個(gè)因式是x+3,求另一個(gè)因式以及m的值.

解:設(shè)另一個(gè)因式為x+n,得x24x+m(x+3)(x+n),則x24x+mx2+(n+3)x+3n

∴另一個(gè)因式為x7m21

仿照以上方法解答下面的問(wèn)題:

已知二次三項(xiàng)式2x2+3x+k有一個(gè)因式是2x5,求另一個(gè)因式以及k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】童裝店銷(xiāo)售某款童裝,每件售價(jià)為60元,每星期可賣(mài)100件,為了促銷(xiāo),該店決定降價(jià)銷(xiāo)售,經(jīng)市場(chǎng)調(diào)查反應(yīng):每降價(jià)1元,每星期可多賣(mài)10已知該款童裝每件成本30設(shè)該款童裝每件售價(jià)x元,每星期的銷(xiāo)售量為y件.

yx之間的函數(shù)關(guān)系式不求自變量的取值范圍

當(dāng)每件童裝售價(jià)定為多少元時(shí),該店一星期可獲得3910元的利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一張矩形紙片,長(zhǎng)10cm,寬6cm,在它的四角各減去一個(gè)同樣的小正方形,然后折疊成一個(gè)無(wú)蓋的長(zhǎng)方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長(zhǎng).設(shè)剪去的小正方形邊長(zhǎng)是xcm,根據(jù)題意可列方程為( 。

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,的頂點(diǎn)都在正方形(每個(gè)小正方形邊長(zhǎng)為單位1)網(wǎng)格的格點(diǎn)上.

1的形狀是   (直接寫(xiě)答案)

2)畫(huà)出沿軸翻折后的

3)畫(huà)出繞點(diǎn)順時(shí)針旋轉(zhuǎn)并求出旋轉(zhuǎn)過(guò)程中掃過(guò)的面積.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于點(diǎn)AB(3,0),與y軸交于點(diǎn)C(0,3).

(1)求拋物線的解析式;

(2)若點(diǎn)M是拋物線上在x軸下方的動(dòng)點(diǎn),過(guò)MMNy軸交直線BC于點(diǎn)N,求線段MN的最大值;

(3)E是拋物線對(duì)稱(chēng)軸上一點(diǎn),F是拋物線上一點(diǎn),是否存在以A,B,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,AB=2,∠B=120°,點(diǎn)MAD的中點(diǎn),點(diǎn)P由點(diǎn)A出發(fā),沿A→B→C→D作勻速運(yùn)動(dòng),到達(dá)點(diǎn)D停止,則APM的面積y與點(diǎn)P經(jīng)過(guò)的路程x之間的函數(shù)關(guān)系的圖象大致是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB和拋物線的交點(diǎn)是A(0,-3)B(5,9),已知拋物線的頂點(diǎn)D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點(diǎn)坐標(biāo);

(2)軸上是否存在一點(diǎn)C,與A,B組成等腰三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;

(3)在直線AB的下方拋物線上找一點(diǎn)P,連接PA,PB使得△PAB的面積最大,并求出這個(gè)最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案