【題目】如圖,AD是∠EAC的平分線,AD∥BC,∠B=30°,則∠C的度數(shù)為( 。

A.50°
B.40°
C.30°
D.20°

【答案】C
【解析】解:∵AD∥BC,∠B=30°,
∴∠EAD=∠B=30°.
又∵AD是∠EAC的平分線,
∴∠EAC=2∠EAD=60°.
∵∠EAC=∠B+∠C,
∴∠C=∠EAC﹣∠B=30°.
故選C.
由AD∥BC,∠B=30°利用平行線的性質即可得出∠EAD的度數(shù),再根據(jù)角平分線的定義即可求出∠EAC的度數(shù),最后由三角形的外角的性質即可得出∠EAC=∠B+∠C,代入數(shù)據(jù)即可得出結論.本題考查了平行線的性質、三角形外角性質以及角平分線的定義,解題的關鍵是求出∠EAC=60°.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)平行線的性質找出相等或互補的角是關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( 。
A.袋中有形狀、大小、質地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球
B.天氣預報“明天降水概率10%”,是指明天有10%的時間會下雨
C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為發(fā)展電信事業(yè),方便用戶,電信公司對移動電話采取不同的收費方式,其中,所使用的便民卡如意卡在某市范圍內(nèi)每月(30天)的通話時間x(min)與通話費y(元)的關系如圖所示:

(1)分別求出通話費y1,y2與通話時間x之間的函數(shù)關系式;

(2)請幫用戶計算,在一個月內(nèi)使用哪一種卡便宜.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,D、E分別是邊AC、BC上的點,若,,則 ______ cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】孝感市在創(chuàng)建國家級園林城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A種,B種樹木每棵各多少元?
(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,I是△ABC的內(nèi)心,AI的延長線和△ABC的外接圓相交于點D,連接BI、BD、DC.下列說法中錯誤的一項是( 。
A.線段DB繞點D順時針旋轉一定能與線段DC重合
B.線段DB繞點D順時針旋轉一定能與線段DI重合
C.∠CAD繞點A順時針旋轉一定能與∠DAB重合
D.線段ID繞點I順時針旋轉一定能與線段IB重合

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上,點 A 的初始位置表示的數(shù)為 1,現(xiàn)點 A 做如下移動:第 1 次點 A 向左移動 3 個單位長度至點 A1,第 2 次從點 A1 向右移動 6 個單位長度至點 A2,第 3 次從點 A2 向左移動 9 個單位長度至點 A3,…,按照這種移動方式進行下去,點 A4 表示的數(shù),是__________ ,如果點 An 與原點的距離不小于 20, 那么 n 的最小值是________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,且|a|=|c|.

(1)若|a+c|+|b|=2,求b的值;

(2)用“>”從大到小把a,b,﹣b,c連接起來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列文字:

我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個數(shù)學等式,例如由圖1可以得到(a+2b)(a+b)=a2+3ab+2b2.請解答下列問題:

(1)寫出圖2中所表示的數(shù)學等式_____;

(2)利用(1)中所得到的結論,解決下面的問題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;

(3)圖3中給出了若干個邊長為a和邊長為b的小正方形紙片及若干個邊長分別為a、b的長方形紙片,

請按要求利用所給的紙片拼出一個幾何圖形,并畫在圖3所給的方框中,要求所拼出的幾何圖形的面積為2a2+5ab+2b2,

再利用另一種計算面積的方法,可將多項式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=______.

查看答案和解析>>

同步練習冊答案