【題目】如圖,在ABCD中,點E是對角線BD上的一點,過點CCFBD,且CF=DE,連接AE、BF、EF

1)求證:△ADE≌△BCF;

2)若BFCABE=90°,判斷四邊形ABFE的形狀,并證明你的結論.

【答案】1)證明見解析;(2)矩形,證明見解析

【解析】

1)根據(jù)平行四邊形的性質(zhì)求得AD=BC,∠ADB=DBC,由平行線的性質(zhì)求得∠DBC=BCF,從而求得∠ADB=BCF,利用SAS定理判定三角形全等即可;

2)先證明四邊形ABFE是平行四邊形,由△ADE≌△BCF,得出∠AED=BFC,由三角形的外角性質(zhì)證出∠BAE=90°,從而判定四邊形ABFE為矩形.

證明:(1)∵四邊形 ABCD 是平行四邊形,

AD=BC,ADBC,

∴∠ADB=DBC,

又∵CFDB

∴∠DBC=BCF,

∴∠ADB=BCF,

又∵DE=CF

∴△ADE≌△BCF

2)平行四邊形ABFE是矩形.

CFDE,CF=DE

∴四邊形 CDEF 是平行四邊形,

EFCDEF=CD

∵四邊形 ABCD 是平行四邊形,

ABCD,AB=CD

ABEF,AB=EF

∴四邊形 ABFE 是平行四邊形,

∵△ADE≌△BCF,

∴∠AED=BFC,

又∵∠BFC-∠ABE=90°,

∴∠AED-∠ABE=90°,

∵∠AED-∠ABE=BAE

∴∠BAE=90°,

□ABFE是矩形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某竹制品加工廠根據(jù)市場調(diào)研結果,對該廠生產(chǎn)的一種新型竹制品玩具未來兩年的銷售進行預測,并建立如下模型:設第t個月,竹制品銷售量為P(單位:箱),Pt之間存在如圖所示函數(shù)關系,其圖象是線段AB(不含點A)和線段BC的組合.設第t個月銷售每箱的毛利潤為Q(百元),且Qt滿足如下關系Q=2t+80≤t≤24).

1)求Pt的函數(shù)關系式(6≤t≤24).

2)該廠在第幾個月能夠獲得最大毛利潤?最大毛利潤是多少?

3)經(jīng)調(diào)查發(fā)現(xiàn),當月毛利潤不低于40000且不高于43200元時,該月產(chǎn)品原材料供給和市場售最和諧,此時稱這個月為和諧月,那么,在未來兩年中第幾個月為和諧月?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:二次函數(shù)C1y1ax2+2ax+a-1a≠0).

1)把二次函數(shù)C1的表達式化成yax-h2+ba≠0)的形式 ,并寫出頂點坐標 ;

2)已知二次函數(shù)C1的圖象經(jīng)過點A(-3,1)

a的值 ;

②點B在二次函數(shù)C1的圖象上,點A,B關于對稱軸對稱,連接AB.二次函數(shù)C2y2kx2+kxk≠0)的圖象,與線段AB只有一個交點,則k的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2ax1,y2ax2ax1(其中a為常數(shù),且a0)

1)請寫出三條與上述拋物線有關的不同類型的結論;

2)當a時,設y1=-ax2ax1x軸分別交于M,N兩點(MN的左邊),y2ax2ax1x軸分別交于E,F兩點(EF的左邊),觀察MN,EF四點坐標,請寫出一個你所得到的正確結論,并說明理由;

3)設上述兩條拋物線相交于A,B兩點,直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過AB兩點,l在直線l1l2之間,且l與兩條拋物線分別交于CD兩點,求線段CD的最大值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,正方形中,點是對角線的中點,點是線段上(不與點,重合)的一個動點,過點交邊于點

1)求證:

2)如圖②,若正方形的邊長為,過點于點,在點運動的過程中,的長度是否發(fā)生變化?若不變,試求出這個不變的值;若變化,請說明理由.

3)用等式表示線段,,之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是

A.袋中有形狀、大小、質(zhì)地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球

B.天氣預報“明天降水概率10%”,是指明天有10%的時間會下雨

C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎

D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、BC、CD分別與⊙O切于EF、G,且ABCD.連接OB、OC,延長CO交⊙O于點M,過點MMNOBCDN

1)求證:MN是⊙O的切線;

2)當OB6cmOC8cm時,求⊙O的半徑及MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA切⊙O于點APC過點O且與⊙O交于B,C兩點,若PA=6cm,PB=2cm,則△PAC的面積是_____cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全國各地都在推行新型農(nóng)村醫(yī)療合作制度.南充市也正在推行:村民只要每人每年交元錢,就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費,年終時可得到按一定比例返回的返回款.小東與同學隨機調(diào)查了他們鎮(zhèn)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計圖,請根據(jù)以下信息解答問題:

1)本次調(diào)查了多少村民?被調(diào)查的村民中,有多少人參加合作醫(yī)療得到了返回款?

2)該鎮(zhèn)若有個村民,請你估計有多少人參加了合作醫(yī)療?要使兩年后參加合作醫(yī)療的人數(shù)增加到人,假設這兩年的年增長率相同,求這個年增長率.

查看答案和解析>>

同步練習冊答案