【題目】如圖,已知:∠MON=30°,A1、A2A3…在射線ON,B1、B2、B3…在射線OM,A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,OA1=1,則△A6B6A7的邊長為( )

A. 16B. 32C. 64D. 128

【答案】B

【解析】

根據等腰三角形的性質以及平行線的性質得出A1B1A2B2A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8A5B5=16B1A2進而得出答案.

A1B1A2是等邊三角形,

A1B1=A2B1,3=4=12=60°,

∴∠2=120°

∵∠MON=30°,

∴∠1=180°120°30°=30°,

又∵∠3=60°

∴∠5=180°60°30°=90°,

∵∠MON=1=30°,

OA1=A1B1=1,

A2B1=1,

A2B2A3A3B3A4是等邊三角形,

∴∠11=10=60°,13=60°,

∵∠4=12=60°

A1B1A2B2A3B3,

∴∠1=6=7=30°,5=8=90°,

A2B2=2B1A2,

A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16

以此類推:AnBnAn+1的邊長為2n-1,

A6B6A7的邊長為:26-1=32.

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,的平分線交于點,過點,光,若、周長分別為.

(1)求證:

(2)線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點C,點B在拋物線上,且與點C關于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經過該二次函數(shù)圖象上的點A(﹣1,0)及點B.

(1)求二次函數(shù)與一次函數(shù)的解析式;

(2)根據圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+2x的頂點為A點,且與x軸的正半軸交于點B,P點為該拋物線對稱軸上一點,則OP+AP的最小值為(  )

A. B. C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,的平分線與的垂直平分線交于點,將沿上,上)折疊,點與點恰好重合,則______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,AD平分∠BAC,DEABE

1)若∠DEC25°,求∠B的度數(shù);

2)求證:直線AD是線段CE的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,ABC,∠BAC=90°,AB=AC直線經過點A,BDl于的DCEl于的E

(1)求證BD+CE=DE;

(2)當變換到如圖②所示的位置時,試探究BD、CE、DE的數(shù)量關系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,放置的△OAB1,B1A1B2B2A2B3,…都是邊長為2的等邊三角形,邊AOy軸上,點B1、B2、B3都在直線y=x上,則點A2018的坐標為( 。

A. (2018,2020) B. (2018,2018) C. (2020,2020) D. (2018,2020)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點MP,N分別為DEDC,BC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關系是 ,位置關系是 ;

(2)探究證明

ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BDCE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

同步練習冊答案