【題目】閱讀理解:

如圖(1),在平面直角坐標(biāo)系xOy中,已知點(diǎn)A的坐標(biāo)是(12),點(diǎn)B的坐標(biāo)是(3,4),過(guò)點(diǎn)A、點(diǎn)B作平行于x軸、y軸的直線相交于點(diǎn)C,得到RtABC,由勾股定理可得,線段AB

得出結(jié)論:

1)若A點(diǎn)的坐標(biāo)為(x1,y1),B點(diǎn)的坐標(biāo)為(x2,y2)請(qǐng)你直接用AB兩點(diǎn)的坐標(biāo)表示A、B兩點(diǎn)間的距離;

應(yīng)用結(jié)論:

2)若點(diǎn)Py軸上運(yùn)動(dòng),試求當(dāng)PAPB時(shí),點(diǎn)P的坐標(biāo).

3)如圖(2)若雙曲線L1yx0)經(jīng)過(guò)A12)點(diǎn),將線段OA繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)A恰好落在雙曲線L2y=﹣x0)上的點(diǎn)D處,試求AD兩點(diǎn)間的距離.

【答案】(1);(2)P0,5);(3)

【解析】

1)根據(jù)題目提供的兩點(diǎn)間的距離公式即可得出結(jié)論;

2)設(shè)出點(diǎn)P,根據(jù)題目提供的兩點(diǎn)間的距離公式表示出PA,PB,最后利用PAPB建立方程求解即可得出結(jié)論;

3)將點(diǎn)A坐標(biāo)代入雙曲線L1的解析式中,求出k,設(shè)出點(diǎn)D的坐標(biāo),利用題目提供的兩點(diǎn)間距離公式表示出OD,再利用旋轉(zhuǎn)得出OAOD,建立方程求解,即可得出結(jié)論.

解:(1)∵A點(diǎn)的坐標(biāo)為(x1,y1),B點(diǎn)的坐標(biāo)為(x2,y2),

∴根據(jù)兩點(diǎn)間的距離公式得,;

2)設(shè)點(diǎn)P0,a),

A的坐標(biāo)是(1,2),點(diǎn)B的坐標(biāo)是(3,4),

PA,PB,

PAPB,

,

a5

P05);

3)∵雙曲線L1yx0)經(jīng)過(guò)A12)點(diǎn),

OA,k1×22

∴雙曲線L1yx0),雙曲線L2y=﹣x0),

設(shè)點(diǎn)D坐標(biāo)為(m,﹣)(m0),

OD,

由旋轉(zhuǎn)知,OAOD

,

m±1m±2,

m0

m1(和點(diǎn)A重合,舍去)或m2

D2,﹣1).

A12),

AD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果的對(duì)角線相交于點(diǎn),那么在下列條件中,能判斷為菱形的是(

A. ∠OAB=∠OBA B. ∠OAB=∠OBC

C. ∠OAB=∠OCD D. ∠OAB=∠OAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=﹣x2+mx的圖象如圖,對(duì)稱軸為直線x2,若關(guān)于x的一元二次方程﹣x2+mxt0t為實(shí)數(shù))在1x5的范圍內(nèi)有解,則t的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有一個(gè)角是其對(duì)角兩倍的圓的內(nèi)接四邊形叫做圓美四邊形,其中這個(gè)角叫做美角已知四邊形ABCD是圓美四邊形

求美角的度數(shù);

如圖1,若的半徑為,求BD的長(zhǎng);

如圖2,若CA平分,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)yax2+bx+ca、b、c為常數(shù),且a≠0)的圖象如圖所示,給出下列結(jié)論:①b24ac; abc0;③ab; b+c3a;⑤方程ax2+bx+c0的兩根之和的一半大于﹣1.其中,正確的結(jié)論有( 。

A. ①②③⑤B. .①②④⑤C. ①②④D. .①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,經(jīng)過(guò)兩點(diǎn)的圓交軸于點(diǎn)上方),則四邊形面積的最小值為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yx2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(﹣1,0),C0,﹣3).

1)求拋物線的解析式;

2)如圖1,拋物線頂點(diǎn)為E,EFx軸于F點(diǎn),Mm,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.

3)如圖2,將拋物線平移,使其頂點(diǎn)E與原點(diǎn)O重合,直線ykx+2k0)與拋物線相交于點(diǎn)PQ(點(diǎn)P在左邊),過(guò)點(diǎn)Px軸平行線交拋物線于點(diǎn)H,當(dāng)k發(fā)生改變時(shí),請(qǐng)說(shuō)明直線QH過(guò)定點(diǎn),并求定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了估計(jì)某地區(qū)供暖期間空氣質(zhì)量情況,某同學(xué)在20天里做了如下記錄:

其中ω50時(shí)空氣質(zhì)量為優(yōu),50≤ω≤100時(shí)空氣質(zhì)量為良,100ω≤150時(shí)空氣質(zhì)量為輕度污染.若按供暖期125天計(jì)算,請(qǐng)你估計(jì)該地區(qū)在供暖期間空氣質(zhì)量達(dá)到良以上(含良)的天數(shù)為( 。

污染指數(shù)(ω

40

60

80

100

120

140

天數(shù)(天)

3

2

3

4

5

3

A. 75B. 65C. 85D. 100

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx3x軸、y軸分別交于點(diǎn)B、點(diǎn)C,經(jīng)過(guò)BC兩點(diǎn)的拋物線y=﹣x2+mx+nx軸的另一個(gè)交點(diǎn)為A,頂點(diǎn)為P

(1)3m+n的值;

(2)在該拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使以C,PQ為頂點(diǎn)的三角形為等腰三角形?若存在,求出有符合條件的點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)將該拋物線在x軸上方的部分沿x軸向下翻折,圖象的其余部分保持不變,翻折后的圖象與原圖象x軸下方的部分組成一個(gè)“M“形狀的新圖象,若直線yx+b與該“M”形狀的圖象部分恰好有三個(gè)公共點(diǎn),求b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案