【題目】如圖1,已知中,,,,為斜邊上一個(gè)動(dòng)點(diǎn),作,交直角邊于點(diǎn),以為直徑作,交于點(diǎn),連接,交于點(diǎn).連結(jié),設(shè).
(1)用含的代數(shù)式表示的長(zhǎng);
(2)求證:;
(3)如圖2,當(dāng)與邊相切時(shí),求的直徑;
(4)若以為頂點(diǎn)的三角形是等腰三角形時(shí),求所有滿足條件的的值.
【答案】(1),;(2)見(jiàn)解析;(3);(4)或或.
【解析】
(1)利用,即可得出結(jié)論;
(2)利用同弧所對(duì)的圓周角相等得出,利用同角的余角相等得出,從而得出結(jié)論;
(3)作,,則,,利用得出,進(jìn)而得出直徑;
(4)分、、三種情況討論即可.
(1)解:在中,由勾股定理得:,
∵,∴,
在和中
∵,
∴,
∴,即
解得:,
∴,,
(2)證明:∵
∴.
又∵.
∴.
解:(3)作,,垂足分別為,
∵與相切,∴,
∵,
∴,
∴ ∴
∴的直徑為;
(4)若以為頂點(diǎn)的三角形是等腰三角形,則可分為三種情況:
①當(dāng)時(shí),
∵,∴,∴,即
∵,∴,
在和中,
,
∴
∴,
∴
∴;
②當(dāng)時(shí),
∵為直徑,∴,即,
∵,,
∴,
∴,即,
∴,,
∴,
∵,∴,
∵四邊形內(nèi)接于,
∴,
∴,
在和中,
∵,
∴,
∴,即,
解得:,
經(jīng)檢驗(yàn):是原方程的解,
∴;
③當(dāng)時(shí),
∵,∴,
∵四邊形內(nèi)接于,
∴,,即
∴,
在和中,
∵,
∴,
∴,
∴,
∴;
綜上所述:當(dāng)或或時(shí),以為頂點(diǎn)的三角形是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某課外活動(dòng)小組為了解本校學(xué)生上學(xué)常用的一種交通方式,隨機(jī)調(diào)查了本校部分學(xué)生,根據(jù)調(diào)查結(jié)果,統(tǒng)計(jì)整理并制作了如下尚不完整的統(tǒng)計(jì)圖表:請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
(1)參與本次調(diào)查的學(xué)生共有 人;
(2)統(tǒng)計(jì)表中,m= ,n= ;扇形統(tǒng)計(jì)圖中,B組所對(duì)應(yīng)的圓心角的度數(shù)為 ;
(3)若該校共有1500名學(xué)生,請(qǐng)估計(jì)全校騎自行車(chē)上學(xué)的學(xué)生人數(shù);
(4)該小組據(jù)此次調(diào)查結(jié)果向?qū)W校建議擴(kuò)建學(xué)生車(chē)棚,若平均每4平方米能停放5輛自行車(chē),請(qǐng)估計(jì)在現(xiàn)有300平方米車(chē)棚的基礎(chǔ)上,至少還需要擴(kuò)建多少平方米才能滿足學(xué)生停車(chē)需求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)一定的正方形ABCD,Q是CD上一動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過(guò)M作MN⊥AQ交BC于N點(diǎn),作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;
②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,平分交于點(diǎn),于點(diǎn),下列結(jié)論:①;②;③;④點(diǎn)在線段的垂直平分線上,其中正確的個(gè)數(shù)有( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,AB =AC,點(diǎn)D在BC上,點(diǎn)F在BA的延長(zhǎng)線上,FD =FC,點(diǎn)E是AC與DF的交點(diǎn),且ED =EF,FG∥BC交CA的延長(zhǎng)線于點(diǎn)G.
(1)∠BFD =∠GCF 嗎?說(shuō)明理由;
(2)求證:△GEF ≌△CED;
(3)求證:BD =DC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,,,點(diǎn)從點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿向點(diǎn)運(yùn)動(dòng),過(guò)點(diǎn)作交的直角邊于點(diǎn),以為邊向右側(cè)作正方形.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒,正方形與的重疊部分的面積為.
(1)用含的代數(shù)式表示線段的長(zhǎng);
(2)求與的函數(shù)關(guān)系式,并直接寫(xiě)出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y=(x>0)圖象上一點(diǎn),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,連接OA,OB,tan∠OAB=.點(diǎn)C是反比例函數(shù)y=(x>0)圖象上一動(dòng)點(diǎn),連接AC,OC,若△AOC的面積為,則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,A(-4,3),B(0,1),將線段AB沿軸的正方向平移個(gè)單位,得到線段A′B′,且A′,B′恰好都落在反比例函數(shù)的圖象上.
(1)用含的代數(shù)式表示點(diǎn)A′,B′的坐標(biāo);
(2)求的值和反比例函數(shù)的表達(dá)式;
(3)點(diǎn)為反比例函數(shù)圖象上的一個(gè)動(dòng)點(diǎn),直線與軸交于點(diǎn),若,請(qǐng)直接寫(xiě)出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出:
(1)如圖①在中,是邊的高,點(diǎn)是上任意一點(diǎn),若則的最小值為_ ;
(2)如圖②,在等腰中,是的垂直平分線,分別交于點(diǎn),,求的周長(zhǎng);
問(wèn)題解決:
(3)如圖③,某公園管理員擬在園內(nèi)規(guī)劃一個(gè)區(qū)域種植花卉,且為方便游客游覽,欲在各頂點(diǎn)之間規(guī)劃道路和,滿足點(diǎn)到的距離為.為了節(jié)約成本,要使得之和最短,試求的最小值(路寬忽略不計(jì)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com