【題目】如圖,在ABC中,CDAB于點D,AC=4,BC=3,DB=,

(1)求CD、AD的長

(2)判斷ABC的形狀,并說明理由。

【答案】(1)、CD=,AD=;(2)、直角三角形,理由見解析

【解析】

試題分析:(1)、根據CDAB,BC=3,BD=得出CDB和ADC為直角三角形,然后根據直角三角形的勾股定理分別求出CD和AD的長度;(2)、根據題意得出AC,BC和AB的長度,然后根據勾股定理的逆定理得出三角形為直角三角形.

試題解析:(1)、CDAB,BC=3,BD= ∴∠CDB=CDA=90° 在RtCDB中,由勾股定理可得:

CD=

在RtADC中,AC=4,CD=,由勾股定理可得:AD=

(2)、ABC為直角三角形

ABC中,AC=4,BC=3,AB=AD+BD=+=5

由勾股定理的逆定理可得:ABC為直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F(xiàn)在DE上,并且AF=CE.

(1)求證:四邊形ACEF是平行四邊形;

(2)當B的大小滿足什么條件時,四邊形ACEF是菱形?請回答并證明你的結論;

(3)四邊形ACEF有可能是正方形嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個三角形的兩邊長分別是2和7,第三邊為偶數(shù),則此三角形的周長是(
A.15
B.16
C.17
D.15或17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(  )
A.三點確定一個圓
B.一個三角形只有一個外接圓
C.和半徑垂直的直線是圓的切線
D.三角形的內心到三角形三個頂點距離相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知下列等式:

(1)32﹣12=8,

252﹣32=16

372﹣52=24,

……

1)請仔細觀察,寫出第4個式子;

2)根據以上式子的規(guī)律,寫出第n個式子,并用所學知識說明第n個等式成立;

(3)利用(2)中發(fā)現(xiàn)的規(guī)律計算:8+16+24+…+792+800.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列兩點都在一次函數(shù)y=-2x+3的圖象上的是(  )

A. 原點和點(1,1B. 11)和(2,3

C. 03)和(1,1D. 0,3)和(23

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為保護學生視力,課桌椅的高度都是按一定的關系配套設計的,研究表明:假設課桌的高度為ycm,椅子的高度為xcm,則y是x的一次函數(shù),下表列出兩套符合條件的課桌椅的高度.

第一套 第二套

椅子高度x(cm) 42 38

課桌高度y(cm) 74 70

(1)請確定課桌高度與椅子高度的函數(shù)關系式;

(2)現(xiàn)有一張高80cm的課桌和一張高為43cm的椅子,它們是否配套?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是(  )

A. x4+x2=x6 B. x2x3=x6 C. x23=x6 D. x2y2=(xy2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,ABCD是一張矩形紙片,AD=BC=1,AB=CD=5.在矩形ABCD的邊AB上取一點M,在CD上取一點N,將紙片沿MN折疊,使MB與DN交于點K,得到MNK.

(1)若1=70°,求MKN的度數(shù).

(2)MNK的面積能否小于?若能,求出此時1的度數(shù);若不能,試說明理由.

(3)如何折疊能夠使MNK的面積最大?請你利用備用圖探究可能出現(xiàn)的情況,求出最大值.

查看答案和解析>>

同步練習冊答案