【題目】如圖,已知點和點,點和點是軸上的兩個定點.
(1)當(dāng)線段向左平移到某個位置時,若的值最小,求平移的距離.
(2)當(dāng)線段向左或向右平移時,是否存在某個位置,使四邊形的周長最小?請說明如何平移?若不存在,請說明理由.
【答案】(1)往左平移個單位;(2)存在,往左平移個單位.
【解析】
(1)作B點關(guān)于x軸的對稱點B1,連接AB1,由對稱性可知AC+BC=AC+B1C,當(dāng)直線AB1向左平移到經(jīng)過點C時,AC+BC最小,故求出直線AB1與x軸的交點即可知平移距離;
(2)四邊形中長度不變,四邊形的周長最小,只要最短,將線段DA向右平移2個單位,D,C重合,A點平移到A1(-2,8),方法同(1),求出A1B1的解析式,得到直線A1B1與x軸的交點即可知平移距離.
(1)如圖,作B點關(guān)于x軸的對稱點B1(2,-2),連接AB1,由對稱性可知AC+BC=AC+B1C,當(dāng)直線AB1向左平移到經(jīng)過點C時,AC+BC最小,
設(shè)直線AB1的解析式為:,
代入點A(-4,8),B1(2,-2)得:
,解得
∴直線AB1的解析式為
當(dāng)y=0時,,解得,
則直線AB1與軸交于,
∵C(-2,0),
∴往左平移個單位.
(2)四邊形中長度不變,只要最短,
如圖,將線段DA向右平移2個單位,D,C重合,A點平移到A1(-2,8),
同(1)可知,當(dāng)直線AB2向左平移到經(jīng)過點C時,AD+BC最小,
設(shè)直線A1B1的解析式為,
代入點A1(-2,8),B1(2,-2)得:
,解得
∴直線A1B1的解析式為
當(dāng)y=0時,,解得
∴直線A1B1與軸交于,
∴往左平移個單位.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點B,A分別在x軸、y軸上,,在坐標(biāo)軸上找一點C,使得是等腰三角形,則符合條件的等腰三角形ABC有________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE
(1)求證:CE=AD
(2)當(dāng)點D在AB中點時,四邊形BECD是什么特殊四邊形?說明理由
(3)若D為AB的中點,則當(dāng)∠A的大小滿足什么條件時,四邊形BECD是正方形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,△ABC是格點三角形(三角形的三個頂點都是小正方形的頂點).
(1)在第一象限內(nèi)找一點P,以格點P、A、B為頂點的三角形與△ABC相似但不全等,請寫出符合條件格點P的坐標(biāo);
(2)請用直尺與圓規(guī)在第一象限內(nèi)找到兩個點M、N,使∠AMB=∠ANB=∠ACB.請保留作圖痕跡,不要求寫畫法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點將線段分成兩部分,如果,那么稱點為線段的黃金分割點,某教學(xué)興趣小組在進(jìn)行研究時,由“黃金分割點”聯(lián)想到“黃金分割線”,類似的給出“黃金分割線”的定義:“一直線將一個面積為的圖形分成兩部分,這兩部分的面積分別為,,如果,那么稱這條直線為該圖形的黃金分割線.
如圖,在中,,,的平分線交于點,請問直線是不是的黃金分割線,并證明你的結(jié)論;
如圖,在邊長為的正方形中,點是邊上一點,若直線是正方形的黃金分割線,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某品牌計算機春節(jié)期間搞活動,規(guī)定每臺計算機售價 0.7 萬元,首次付款后每個月應(yīng)還的錢數(shù) y (元)與還錢月數(shù) t 的關(guān)系如圖所示.
(1)根據(jù)圖像寫出 y 與 t 的函數(shù)關(guān)系式;
(2)求出首次付款的錢數(shù);
(3)如果要求每月支付的錢數(shù)不多于 400 元,那么首付后還至少需幾個月才能將所有的錢全部還清?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中的位置如圖所示.
(1)作出關(guān)于軸對稱的,并寫出各頂點的坐標(biāo);
(2)將向右平移6個單位,作出平移后的并寫出各頂點的坐標(biāo);
(3)觀察和,它們是否關(guān)于某直線對稱?若是,請用粗線條畫出對稱軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)學(xué)生會在開展“厲行勤儉節(jié)約,反對鋪張浪費”的主題教育活動中,在全校范圍內(nèi)隨機抽取了若干名學(xué)生就某日晚飯浪費飯菜情況進(jìn)行調(diào)查,調(diào)查內(nèi)容分為四種:A.飯和菜全部吃完;B.有剩飯但菜吃完;C.飯吃完但菜有剩;D.飯和菜都有剩.學(xué)生會根據(jù)統(tǒng)計結(jié)果,繪制了如下統(tǒng)計表:根據(jù)所給信息,回答下列問題:
選項 | 頻數(shù) | 頻率 |
A | 36 | m |
B | n | 0.2 |
C | 6 | 0.1 |
D | 6 | 0.1 |
(1)統(tǒng)計表中:m=______;n=______.
(2)該中學(xué)有1800名學(xué)生晚飯在校就餐,根據(jù)調(diào)查結(jié)果,估計當(dāng)天晚飯有多少人能夠把飯和菜全部吃完?
(3)為了對同學(xué)們浪費的行為進(jìn)行糾正,校學(xué)生會從飯和菜都有剩的甲、乙、丙、丁四名同學(xué)中任取2位同學(xué)進(jìn)行批評教育,請用列表法或樹狀圖法求恰好抽到甲和丁的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com