【題目】如圖,△ABC中,AE交BC于點D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,求DC的長.
【答案】解:∵∠C=∠E,∠ADC=∠BDE,
∴△ADC∽△BDE,
∴ = ,
又∵AD:DE=3:5,AE=8,
∴AD=3,DE=5,
∵BD=4,
∴ = ,即 .
∴DC= .
【解析】由對頂角相等,可得=,又∠C=∠E,可得△ADC∽△BDE,又因為對應(yīng)邊的比相等,計算可得CD的值。
【考點精析】關(guān)于本題考查的相似三角形的判定與性質(zhì),需要了解相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在山頂上有一座電視塔,在塔頂B處,測得地面上一點A的俯角α=60°,在塔底C處測得的俯角β=45°,已知BC=60m,求山高CD(精確到1m, ≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y= x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(一1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是拋物線對稱軸上的一個動點,當△ACM周長最小時,求點M的坐標及△ACM的最小周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O(0,0),A(0,1)是正方形OAA1B的兩個頂點,以O(shè)A1對角線為邊作正方形OA1A2B1 , 再以正方形的對角線OA2作正方形OA1A2B1 , …,依此規(guī)律,則點A8的坐標是( )
A.(﹣8,0)
B.(0,8)
C.(0,8 )
D.(0,16)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:(不寫作法,但必須保留作圖痕跡)
如圖:某地有兩所大學和兩條相交叉的公路,(點M,N表示大學,AO,BO表示公路).現(xiàn)計劃修建一座物資倉庫,希望倉庫到兩所大學的距離相等,到兩條公路的距離也相等.你能確定倉庫P應(yīng)該建在什么位置嗎?在所給的圖形中畫出你的設(shè)計方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB為半圓O的直徑,C為圓上一點,AD平分∠BAC交半圓于點D,過點D作DE⊥AC,DE交AC的延長線于點E.
(1)求證:DE是⊙O的切線;
(2)若⊙O的半徑為2,DE= ,求線段AC的長
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在線段AB上,點M、N分別是AC、BC的中點.
若,求線段MN的長;
若C為線段AB上任一點,滿足,其它條件不變,你能猜想MN的長度嗎?并說明理由,你能用一句簡潔的話描述你發(fā)現(xiàn)的結(jié)論嗎?
若C在線段AB的延長線上,且滿足cm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com