【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
【答案】(1)詳見解析;(2)四邊形ADCF是正方形,證明詳見解析.
【解析】
(1)由E是AD的中點(diǎn),AF∥BC,易證得△AEF≌△DEB,即可得AF=BD,又由在△ABC中,∠BAC=90°,AD是中線,根據(jù)直角三角形斜邊的中線等于斜邊的一半,即可證得AD=BD=CD=BC,即可證得:AD=AF;
(2)由AF=BD=DC,AF∥BC,可證得:四邊形ADCF是平行四邊形,又由AB=AC,根據(jù)三線合一的性質(zhì),可得AD⊥BC,AD=DC,繼而可得四邊形ADCF是正方形.
解:(1)證明:∵AF∥BC,
∴∠EAF=∠EDB,
∵E是AD的中點(diǎn),
∴AE=DE,
在△AEF和△DEB中,
,
∴△AEF≌△DEB(ASA),
∴AF=BD,
∵在△ABC中,∠BAC=90°,AD是中線,
∴AD=BD=DC=BC,
∴AD=AF;
(2)解:四邊形ADCF是正方形.
∵AF=BD=DC,AF∥BC,
∴四邊形ADCF是平行四邊形,
∵AB=AC,AD是中線,
∴AD⊥BC,
∵AD=AF,
∴四邊形ADCF是正方形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形 ABCD,E 在線段 BC 上,F 在線段 CD 上.
(1)如圖 1,連接 EF,若EAF =45,求證:BE+DF=EF;
(2)如圖 2,連接 EF,若DAE=AEF ,且 2BE=CE,求的值;
(3)如圖 3,連接 BD,線段 AE、AF 分別交 BD 于點(diǎn) N、M.已知GEB=90 ,DM=MG=4,NG=1,請直接寫出線段AF 的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知□AOBC的頂點(diǎn)O(0,0),,點(diǎn)B(12,0),按以下步驟作圖:①以點(diǎn)O為圓心、適當(dāng)長度為半徑作弧,分別交OA、OB于點(diǎn)D,E;②分別以點(diǎn)D,E為圓心、大于的長為半徑作弧,兩弧∠AOB在內(nèi)交于點(diǎn)F;③作射線OF,交邊AC于點(diǎn)G,則CG的長為( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.
(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);
(2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,逆時針旋轉(zhuǎn)到,其中,點(diǎn)在同-直線上.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)了多少度?
(3)指出對應(yīng)線段、對應(yīng)角及對應(yīng)點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2,一個銳角等于60°的菱形紙片,小芳同學(xué)將一個三角形紙片的一個頂點(diǎn)與該菱形頂點(diǎn)D重合,按順時針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點(diǎn)E、F,∠EDF=60°,當(dāng)CE=AF時,如圖1小芳同學(xué)得出的結(jié)論是DE=DF.
(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CE≠AF時,如圖2小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由;
(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn)E、F分別在CB、BA的延長線上時,如圖3請直接寫出DE與DF的數(shù)量關(guān)系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時,y有最小值,最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)P在x軸上,點(diǎn)A(1,1),O是坐標(biāo)原點(diǎn),且△AOP是等腰三角形,則點(diǎn)P的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的正方形網(wǎng)格中(每個小正方形的邊長是1,小正方形的頂點(diǎn)叫作格點(diǎn)),△ABC的頂點(diǎn)均在格點(diǎn)上,請?jiān)谒o平面直角坐標(biāo)系中按要求畫圖和解答下列問題:
(1)以點(diǎn)C為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)C順時針旋轉(zhuǎn)90°得△CA1B1,畫出△CA1B1;
(2)作出△ABC關(guān)于點(diǎn)A成中心對稱的△AB2C2;
(3)設(shè)AC2與y軸交于點(diǎn)D,則△B1DC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=2x+n與x軸、y軸分別交于點(diǎn)A、B,與雙曲線在第一象限內(nèi)交于點(diǎn)C(1,m),直線CQ的解析式為:y=kx+b(k≠0)
(1)求m和n的值;
(2)過x軸上的點(diǎn)D(3,0)作平行于y軸的直線l,分別與直線AB和雙曲線交于點(diǎn)P、Q,求△APQ的面積.
(3)直接寫出的解集
(4)直接寫出直方程的解。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com