【題目】如圖,拋物線與軸交于兩點,與軸交于點,設(shè)拋物線的頂點為點.
(1)求該拋物線的解析式與頂點的坐標.
(2)試判斷的形狀,并說明理由.
(3)坐標軸上是否存在點,使得以為頂點的三角形與相似?若存在,請直接寫出點的坐標;若不存在,請說明理由.
【答案】(1),;(2)是直角三角形,理由見解析;(3)存在,.
【解析】
(1)已知了拋物線圖象上的三點坐標,可用待定系數(shù)法求出該拋物線的解析式,進而可用配方法或公式法求得頂點D的坐標.
(2)根據(jù)B、C、D的坐標,可求得△BCD三邊的長,然后判斷這三條邊的長是否符合勾股定理即可.
(3)假設(shè)存在符合條件的P點;首先連接AC,根據(jù)A、C的坐標及(2)題所得△BDC三邊的比例關(guān)系,即可判斷出點O符合P點的要求,因此以P、A、C為頂點的三角形也必與△COA相似,那么分別過A、C作線段AC的垂線,這兩條垂線與坐標軸的交點也符合點P點要求,可根據(jù)相似三角形的性質(zhì)(或射影定理)求得OP的長,也就得到了點P的坐標.
(1)設(shè)拋物線的解析式為.
由拋物線與y軸交于點,可知
即拋物線的解析式為
把代入
解得
∴拋物線的解析式為
∴頂點D的坐標為
(2)是直角三角形.
過點D分別作x軸、y軸的垂線,垂足分別為E、F
在中,
∴
在中,
∴
在中,
∴
∴
∴是直角三角形.
(3)連接AC,根據(jù)兩點的距離公式可得:,則有,可得,得符合條件的點為.
過A作交y軸正半軸于,可知,求得符合條件的點為
過C作交x軸正半軸于,可知,求得符合條件的點為
∴符合條件的點有三個:.
科目:初中數(shù)學 來源: 題型:
【題目】勝利中學從全校學生中隨機選取一部分學生,對他們每周上網(wǎng)的時間t進行調(diào)查,調(diào)查情況分為:小時;小時小時;小時小時;小時四種,并將統(tǒng)計結(jié)果制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
求參加調(diào)查的學生的人數(shù);
求扇形圖中組扇形的圓心角度數(shù),并通過計算補全條形統(tǒng)計圖;
在所調(diào)查的學生中,隨機選取一名學生,求他每周上網(wǎng)時間大于小時的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,我們將橫、縱坐標都是整數(shù)的點稱為“整點”.若拋物線y=ax2﹣2ax+a+3與x軸圍成的區(qū)域內(nèi)(不包括拋物線和x軸上的點)恰好有8個“整點”,則a的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與x軸交于點B,與y軸交于點A,直線AB與反比例函數(shù)y=(m>0)在第一象限的圖象交于點C、點D,其中點C的坐標為(1,8),點D的坐標為(4,n).
(1)分別求m、n的值;
(2)連接OD,求△ADO的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個盒子里有3個相同的小球,將3個小球分別標示號碼1、2、3,每次從盒子里隨機取出1個小球且取后放回,預計取球10次.若規(guī)定每次取球時,取出的號碼即為得分,則前八次的取球得分情況如下表所示
次數(shù) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
得分 | 2 | 1 | 1 | 2 | 2 | 3 | 2 | 3 |
(1)設(shè)第1次至第8次取球得分的平均數(shù)為,求的值:
(2)求事件“第9次和第10次取球得分的平均數(shù)等于”發(fā)生的概率;(列表法或樹狀圖)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某批發(fā)城在冬天到來之際進了一批保暖衣,男生的保暖衣每件價格60元,女生的保暖衣每件價格40元,第一批共購買100件.
(1)第一批購買的保暖衣的總費用不超過5400元,求女生保暖衣最少購買多少件?
(2)第二批購買保暖衣,購買男、女生保暖衣的件數(shù)比為,價格保持第一批的價格不變;第三批購買男生保暖衣的價格在第一批購買的價格上每件減少了元 ,女生保暖衣的價格比第一批購買的價格上每件增加了元,男生保暖衣的數(shù)量比第二批增加了,女生保暖衣的數(shù)量比第二批減少了,第二批與第三批購買保暖衣的總費用相同,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(題文)“校園詩歌大賽”結(jié)束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數(shù))進行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖部分信息如下:
(1)本次比賽參賽選手共有 人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數(shù)占總參賽人數(shù)的百分比為 ;
(2)賽前規(guī)定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?/span>78分,試判斷他能否獲獎,并說明理由;
(3)成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見如圖2所示,遮陽傘立柱OA垂直于地面,當將遮陽傘撐開至OD位置時,測得∠ODB=45°,當將遮陽傘撐開至OE位置時,測得∠OEC=30°,且此時遮陽傘邊沿上升的豎直高度BC為20cm,求若當遮陽傘撐開至OE位置時傘下陰涼面積最大,求此時傘下半徑EC的長.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點F.
(1)求證:△AEC≌△ADB;
(2)若AB=,∠BAC=45°,當四邊形ADFC是菱形時,求BF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com