【題目】如圖,在ABCD中,E為邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F.若∠B=52°,∠DAE=20°,則∠FED′的大小為

【答案】36°
【解析】解:∵四邊形ABCD是平行四邊形, ∴∠D=∠B=52°,
由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,
∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,
∴∠FED′=108°﹣72°=36°;
故答案為:36°.
由平行四邊形的性質(zhì)得出∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,與三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點分別為A(-2,2),B(0,5),C(0,2).

(1)畫△,使它與△ABC關(guān)于點C成中心對稱;

(2)平移△ABC,使點A的對應(yīng)點A2坐標(biāo)為(-2,-6),畫出平移后對應(yīng)的

(3)若將繞某一點旋轉(zhuǎn)可得到,則旋轉(zhuǎn)中心的坐標(biāo)為 _____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在山腳下的A處測得山頂N的仰角為45°,此時,他剛好與山底D在同一水平線上.然后沿著坡度為30°的斜坡正對著山頂前行110米到達B處,測得山頂N的仰角為60°.求山的高度.(結(jié)果精確到1米,參考數(shù)據(jù): ≈1.414, ≈1.732).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級(1)班所有學(xué)生參加2010年初中畢業(yè)生升學(xué)體育測試,根據(jù)測試評分標(biāo)準(zhǔn),將他們的成績進行統(tǒng)計后分為A、B、C、D四等,并繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結(jié)合圖中所給信息解答下列問題:
(1)九年級(1)班參加體育測試的學(xué)生有人;
(2)將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,等級B部分所占的百分比是 , 等級C對應(yīng)的圓心角的度數(shù)為
(4)若該校九年級學(xué)生共有850人參加體育測試,估計達到A級和B級的學(xué)生共有人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的頂點坐標(biāo)分別為A(1,1),B(2,3),C(3,0).(1)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后得到的△DEF;

(2)以點O為位似中心,在第三象限內(nèi)把△ABC按相似比2:1放大(即所畫△PQR△ABC的相似比為2:1).

(3)(2)的條件下,若M(a,b)△ABC邊上的任意一點,則△PQR的邊上與點M對應(yīng)的點M′的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)活動課上,小芳到操場上測量旗桿的高度,她的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點的距離為3米,小芳的目高為1.5米,利用她所測數(shù)據(jù),求旗桿的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2m﹣1)x+m2=0有兩個實數(shù)根x1和x2
(1)求實數(shù)m的取值范圍;
(2)當(dāng)x12﹣x22=0時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知小華家、小夏家、小紅家及學(xué)校在同一條大路旁,一天,他們放學(xué)后從學(xué)校出發(fā),先向南行1000m到達小華家A處,繼續(xù)向北行3000m到達小紅B家處,然后向南行6000m到小夏家C處.

(1)以學(xué)校以原點,以向南方向為正方向,用1個單位長度表示1000m,請你在數(shù)軸上表示出小華家、小夏家、小紅家的位置;

(2)小紅家在學(xué)校什么位置?離學(xué)校有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】保護環(huán)境,人人有責(zé),為了更好的利用水資源,某污水處理廠決定購買兩型號污水處理設(shè)備共10,其信息如下表.(1)設(shè)購買型設(shè)備,所需資金共為萬元,每月處理污水總量為,試寫出之間的函數(shù)關(guān)系式,之間的函數(shù)關(guān)系式;(2)經(jīng)預(yù)算,該污水處理廠購買設(shè)備的資金不超過88萬元, 每月處理污水總量不低于2080,請你列舉出所有購買方案,并指出哪種方案最省錢,需多少資金?

查看答案和解析>>

同步練習(xí)冊答案