【題目】如圖,已知直線y=x與拋物線y=x2交于A、B兩點(diǎn).
(1)求交點(diǎn)A、B的坐標(biāo);
(2)記一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=x2的函數(shù)值為y2.若y1>y2,求x的取值范圍.
【答案】(1) A(0,0),B(2,2);(2) 0<x<2.
【解析】
(1)聯(lián)立兩函數(shù)解析式求解即可得到點(diǎn)A、B的坐標(biāo);
(2)根據(jù)函數(shù)圖象寫出直線在拋物線上方部分的x的取值范圍即可.
解: (1)∵直線y=x與拋物線y=x2交于A、B兩點(diǎn),
∴x=x2解得,x1=0,x2=2,
當(dāng)x1=0時(shí),y1=0,x2=2時(shí),y2=2
∴A(0,0),B(2,2);
(2)由(1)知,A(0,0),B(2,2).
∵一次函數(shù)y=x的函數(shù)值為y1,二次函數(shù)y=x2的函數(shù)值為y2.
∴當(dāng)y1>y2時(shí),根據(jù)圖象可知x的取值范圍是:0<x<2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線與x軸的兩個(gè)交點(diǎn)及其頂點(diǎn)構(gòu)成等邊三角形,則稱該拋物線“等邊拋物線”.
(1)若對(duì)任意m,n,點(diǎn)M(m,n)和點(diǎn)N(-m+4,n)恒在“等邊拋物線”:上,求拋物線的解析式;
(2)若拋物線:“等邊拋物線”,求的值;
(3)對(duì)于“等邊拋物線”:,當(dāng)1<x<m吋,總存在實(shí)數(shù)b。使二次函數(shù)的圖象在一次函數(shù)y=x圖象的下方,求m的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是根據(jù)九年級(jí)某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計(jì)圖,下面關(guān)于該班50名同學(xué)一周鍛煉時(shí)間的說法錯(cuò)誤的是( )
A. 眾數(shù)是7 B. 中位數(shù)是6.5
C. 平均數(shù)是 6.5 D. 平均每周鍛煉超過6小時(shí)的人占總數(shù)的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形的邊, , 是上一點(diǎn), , 是邊上一動(dòng)點(diǎn),將梯形沿直線折疊, 的對(duì)應(yīng)點(diǎn)為,當(dāng)的長度最小時(shí), 的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小都相同.正常水位時(shí),大孔水面寬度米,頂點(diǎn)距水面米(即米),小孔頂點(diǎn)距水面米(即米).當(dāng)水位上漲剛好淹沒小孔時(shí),借助圖中的直角坐標(biāo)系,則此時(shí)大孔的水面寬度長為( )
A. 米 B. C. 米 D. 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,點(diǎn)P在AD上,AB=2,AP=1.直角尺的直角頂點(diǎn)放在點(diǎn)P處,直角尺的兩邊分別交AB、BC于點(diǎn)E、F,連接EF(如圖1).
(1)當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合(如圖2).
①求證:△APB∽△DCP;
②求PC、BC的長.
(2)探究:將直角尺從圖2中的位置開始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止.在這個(gè)過程中(圖1是該過程的某個(gè)時(shí)刻),觀察、猜想并解答:
① tan∠PEF的值是否發(fā)生變化?請(qǐng)說明理由.
② 設(shè)AE=x,當(dāng)△PBF是等腰三角形時(shí),請(qǐng)直接寫出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華從二次函數(shù)y=ax2+bx+c的圖象(如圖)中觀察得到了下面五條信息:
①abc>0 ②2a﹣3b=0 ③b2﹣4ac>0 ④a+b+c>0 ⑤4b<c
則其中結(jié)論正確的個(gè)數(shù)是( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點(diǎn)E,A1C1分別交AC、BC于D、F兩點(diǎn).
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關(guān)系?并證明你的結(jié)論;
(2)如圖2,當(dāng)α=30°時(shí),試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示為某種型號(hào)的臺(tái)燈的橫截面圖,已知臺(tái)燈燈柱AB長30cm,且與水平桌面垂直,燈臂AC長為10cm,燈頭的橫截面△CEF為直角三角形,當(dāng)燈臂AC與燈柱AB垂直時(shí),沿CE邊射出的光線剛好射到底座B點(diǎn).若不考慮其它因素,則該臺(tái)燈在桌面可照亮的寬度BD的長為_____cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com