【題目】如圖,ABAC,CD、BE分別是ABC的角平分線,AGBC,AGBG,下列結(jié)論:①∠BAG=2ABF;②BA平分∠CBG;③∠ABG=ACB;④∠CFB=135°.其中正確的結(jié)論是(  )

A. B. C. D.

【答案】C

【解析】

由已知條件可知∠ABC+ACB=90°,又因?yàn)?/span>CDBE分別是ABC的角平分線,所以得到∠FBC+FCB=45°,所以求出∠CFB=135°;有平行線的性質(zhì)可得到:∠ABG=ACB,∠BAG=2ABF.所以可知選項(xiàng)①③④正確.

解:∵ABAC

∴∠BAC=90°,

∵∠BAC+ABC+ACB=180°,

∴∠ABC+ACB=90°

CD、BE分別是ABC的角平分線,

2FBC+2FCB=90°

∴∠FBC+FCB=45°

∴∠BFC=135°故④正確.

AGBC

∴∠BAG=ABC

∵∠ABC=2ABF

∴∠BAG=2ABF 故①正確.

ABAC,

∴∠ABC+ACB=90°,

AGBG,

∴∠ABG+GAB=90°

∵∠BAG=ABC

∴∠ABG=ACB 故③正確.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不透明的口袋里裝有白、黃、藍(lán)三種顏色的乒乓球(除顏色外其余都相同),其中白球有2個(gè),黃球有1個(gè),再?gòu)闹腥我饷?/span>1個(gè)球是白球的概率為.

1)試求袋中藍(lán)球的個(gè)數(shù);

2)第一次任意摸出一個(gè)球(不放回),第二次再摸出一個(gè)球,請(qǐng)用樹狀圖或列表法表示兩次摸到球的所有可能結(jié)果,并求兩次摸到的球都是白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)狱c(diǎn)P以每秒1cm的速度沿圖甲的邊框按從BCDEFA的路徑移動(dòng),相應(yīng)的△ABP的面積S與時(shí)間t之間的關(guān)系如圖乙中的圖象表示.若AB3cm,試回答下列問題

1)圖甲中的BC長(zhǎng)是多少?

2)圖乙中的a是多少?

3)圖甲中的圖形面積是多少?

4)圖乙中的b是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形紙片ABC中,∠B=2∠C,把三角形紙片沿直線AD折疊,點(diǎn)B落在AC邊上的E處,那么下列等式成立的是( 。

A.AC=AD+BDB.AC=AB+BDC.AC=AD+CDD.AC=AB+CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于二次函數(shù)y=ax2+bx+c的圖象有下列命題:

當(dāng)c=0時(shí),函數(shù)的圖象經(jīng)過原點(diǎn);

當(dāng)c>0,且函數(shù)的圖象開口向下時(shí),方程ax2+bx+c=0必有兩個(gè)不相等的實(shí)根;

函數(shù)圖象最高點(diǎn)的縱坐標(biāo)是;

當(dāng)b=0時(shí),函數(shù)的圖象關(guān)于y軸對(duì)稱.

其中正確命題的個(gè)數(shù)是(

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知點(diǎn)AB的坐標(biāo)分別為Aa,0),Bb0),ab滿足方程組,Cy軸正半軸上一點(diǎn),且△ABC的面積SABC6

1)求A、B、C三點(diǎn)的坐標(biāo);

2)坐標(biāo)系中是否存在點(diǎn)Pmm),使SPABSABC,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行電腦知識(shí)競(jìng)賽,將八年級(jí)兩個(gè)班參賽學(xué)生的成績(jī)(得分均為整數(shù))進(jìn)行整理后,分成5組,繪制出如下的頻數(shù)分布直方圖(如圖),已知圖中從左到右的第一、第三、第四、第五小組的頻率分別為0.300.15、0.10、0.05,第二組的頻數(shù)是40

1)求第二組的頻率,并補(bǔ)全這個(gè)頻數(shù)分布直方圖;

2)這兩個(gè)班參賽的學(xué)生人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校課外興趣小組在本校學(xué)生中開展感動(dòng)中國(guó)2014年度人物先進(jìn)事跡知曉情況專題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A、B、C、D四類.其中,A類表示非常了解”,B類表示比較了解”,C類表示基本了解”,D類表示不太了解,劃分類別后的數(shù)據(jù)整理如下表:

類別

A

B

C

D

頻數(shù)

30

40

24

b

頻率

a

0.4

0.24

0.06

(1)表中的a=________,b=________;

(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計(jì)圖中類別為B的學(xué)生數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù);

(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生中類別為C的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文化商店計(jì)劃同時(shí)購(gòu)進(jìn)A、B兩種儀器,若購(gòu)進(jìn)A種儀器2臺(tái)和B種儀器3臺(tái),共需要資金1700元;若購(gòu)進(jìn)A種儀器3臺(tái),B種儀器1臺(tái),共需要資金1500元.

1)求AB兩種型號(hào)的儀器每臺(tái)進(jìn)價(jià)各是多少元?

2)已知A種儀器的售價(jià)為760元/臺(tái),B種儀器的售價(jià)為540元/臺(tái).該經(jīng)銷商決定在成本不超過30000元的前提下購(gòu)進(jìn)AB兩種儀器,若B種儀器是A種儀器的3倍還多10臺(tái),那么要使總利潤(rùn)不少于21600元,該經(jīng)銷商有哪幾種進(jìn)貨方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案