【題目】如圖,在△ACB中,有一點(diǎn)P在AC上移動(dòng),若AB=AC=5,BC=6,則AP+BP+CP的最小值為( )
A.9.6B.9.8C.11D.10.2
【答案】B
【解析】
過點(diǎn)A作AD⊥BC于D,根據(jù)題意可得當(dāng)BP最小時(shí),AP+BP+CP最小,然后根據(jù)垂線段最短可得當(dāng)BP⊥AC時(shí),BP最小,然后根據(jù)三線合一和勾股定理即可求出BD和AD,然后根據(jù)S△ABC=BC·AD=AC·BP即可求出此時(shí)的BP,從而求出結(jié)論.
解:過點(diǎn)A作AD⊥BC于D
∵AP+CP=AC=5
∴AP+BP+CP=5+BP,即當(dāng)BP最小時(shí),AP+BP+CP最小,
根據(jù)垂線段最短,當(dāng)BP⊥AC時(shí),BP最小
∵AB=AC=5,BC=6,
∴BD=BC=3
根據(jù)勾股定理AD==4
此時(shí)S△ABC=BC·AD=AC·BP
∴×6×4=×5·BP
解得:BP=
∴AP+BP+CP的最小值為+5=
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于M、N兩點(diǎn).
(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式.
(2)根據(jù)圖象寫出使反比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如圖的折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( )
A.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
B.一副去掉大小王的普通撲克牌洗勻后,從中任抽一張牌的花色是紅桃
C.暗箱中有1個(gè)紅球和2個(gè)黃球,它們只有顏色上的區(qū)別,從中任取一球是黃球
D.擲一個(gè)質(zhì)地均勻的正六面體骰子,向上的面點(diǎn)數(shù)是4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的直徑,,是的兩條切線,切于,交于,設(shè),,.
(1)求與的函數(shù)關(guān)系式;
(2)若,是的兩實(shí)根,求,的值;
(3)在(2)的前提下,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列解答過程:如圖甲,AB∥CD,探索∠APC與∠BAP、∠PCD之間的關(guān)系.
解:過點(diǎn)P作PE∥AB.
∵AB∥CD,
∴PE∥AB∥CD(平行于同一條直線的兩條直線互相平行).
∴∠1+∠A=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∠2+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).
∴∠1+∠A+∠2+∠C=360°.
又∵∠APC=∠1+∠2,
∴∠APC+∠A+∠C=360°.
如圖乙和圖丙,AB∥CD,請(qǐng)根據(jù)上述方法分別探索兩圖中∠APC與∠BAP、∠PCD之間的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若S△ABC=1分別倍長(zhǎng)(延長(zhǎng)一倍)AB、BC、CA得到再分別延長(zhǎng)得到……,按此規(guī)律,延長(zhǎng)次后得到的的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】誰(shuí)更合理?
某種牙膏上部圓的直徑為2.6cm,下部底邊的長(zhǎng)為4cm,如圖,現(xiàn)要制作長(zhǎng)方體的牙膏盒,牙膏盒底面是正方形,在手工課上,小明、小亮、小麗、小芳制作的牙膏盒的高度都一樣,且高度符合要求.不同的是底面正方形的邊長(zhǎng),他們制作的邊長(zhǎng)如下表:
制作者 | 小明 | 小亮 | 小麗 | 小芳 |
正方形的邊長(zhǎng) | 2cm | 2.6cm | 3cm | 3.4cm |
(1)這4位同學(xué)制作的盒子都能裝下這種牙膏嗎?()
(2)若你是牙膏廠的廠長(zhǎng),從節(jié)約材料又方便取放牙膏的角度來看,你認(rèn)為誰(shuí)的制作更合理?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)點(diǎn)M(m,0)為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)M作x軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)P作PQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)Q作QN⊥x軸于點(diǎn)N,可得矩形PQNM.如圖,點(diǎn)P在點(diǎn)Q左邊,試用含m的式子表示矩形PQNM的周長(zhǎng);
(3)當(dāng)矩形PQNM的周長(zhǎng)最大時(shí),m的值是多少?并求出此時(shí)的△AEM的面積;
(4)在(3)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ,過拋物線上一點(diǎn)F作y軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).若FG= DQ,求點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)都在方格紙的格點(diǎn)上,將△ABC向右平移4格,再向上平移2格,其中每個(gè)格子的邊長(zhǎng)為1個(gè)單位長(zhǎng)度。
⑴在圖中畫出平移后的△A′B′C′;
⑵若連接AA′、CC′,則這兩條線段的關(guān)系是 ;
⑶作△ABC的高AD,并求△ABC的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com