【題目】如圖,A,BC,D為一直線上4個點(diǎn),BC3,BCE為等邊三角形,⊙OA,D,E三點(diǎn),且∠AOD120°,設(shè)ABx,CDy,則yx的函數(shù)關(guān)系式是( 。

A.yB.yxC.y3x+3D.y

【答案】D

【解析】

連接AE,DE,根據(jù)同弧所對的圓周角等于圓心角的一半,求得∠AED120°,然后求得ABE∽△ECD.根據(jù)相似三角形的對應(yīng)邊對應(yīng)成比例即可表示出xy的關(guān)系,從而不難求解.

解:連接AE,DE

∵∠AOD120°,

240°,

∴∠AED120°,

∵△BCE為等邊三角形,

∴∠BEC60°;

∴∠AEB+CED60°;

又∵∠EAB+AEB=∠EBC60°

∴∠EAB=∠CED,

∵∠ABE=∠ECD120°;

∴△ABE∽△ECD,

,

,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解七、八年級學(xué)生對防溺水安全知識的掌握情況,從七、八年級各隨機(jī)抽取50名學(xué)生進(jìn)行測試,并對成績(百分制)進(jìn)行整理、描述和分析.部分信息如下:

a.七年級成績頻數(shù)分布直方圖:

b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79

c.七、八年級成績的平均數(shù)、中位數(shù)如下:

年級

平均數(shù)

中位數(shù)

76.9

m

79.2

79.5

根據(jù)以上信息,回答下列問題:

1)在這次測試中,七年級在80分以上(含80分)的有   人;

2)表中m的值為   ;

3)在這次測試中,七年級學(xué)生甲與八年級學(xué)生乙的成績都是78分,請判斷兩位學(xué)生在各自年級的排名誰更靠前,并說明理由;

4)該校七年級學(xué)生有400人,假設(shè)全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次活動共調(diào)查了   人;在扇形統(tǒng)計圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)小組的兩位同學(xué)準(zhǔn)備測量兩幢教學(xué)樓之間的距離,如圖,兩幢教學(xué)樓AB和CD之間有一景觀池(AB⊥BD,CD⊥BD),一同學(xué)在A點(diǎn)測得池中噴泉處E點(diǎn)的俯角為42°,另一同學(xué)在C點(diǎn)測得E點(diǎn)的俯角為45°(點(diǎn)B,E,D在同一直線上),兩個同學(xué)已經(jīng)在學(xué)校資料室查出樓高AB=15m,CD=20m,求兩幢教學(xué)樓之間的距離BD.

(結(jié)果精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),點(diǎn)是拋物線的頂點(diǎn),過點(diǎn)軸的垂線,垂足為,連接

1)求此拋物線的解析式;

2)點(diǎn)是拋物線上的動點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為

①當(dāng)時,求點(diǎn)的坐標(biāo);

②過點(diǎn)軸,與拋物線交于點(diǎn),軸上一點(diǎn),連接,,將沿著翻折,得,若四邊形恰好為正方形,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABBC,分別過點(diǎn)A,CBM的垂線,垂足分別為M,N

1)求證:BMBCABCN

2)若ABBC

①如圖2,若BMMN,過點(diǎn)AADBCCM的延長線于點(diǎn)D,求DNCN的值;

②如圖3,若BMMN,延長BN至點(diǎn)E,使BMME,過點(diǎn)AAFBCCE的延長線于點(diǎn)F,若ECF的中點(diǎn),且CN1,直接寫出線段AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k0)的圖象交于A(﹣1,a),B兩點(diǎn),與x軸交于點(diǎn)C.

(1)求此反比例函數(shù)的表達(dá)式;

(2)若點(diǎn)P在x軸上,且SACP=SBOC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若拋物線上有兩點(diǎn)關(guān)于原點(diǎn)對稱(點(diǎn)A在點(diǎn)B左側(cè))則稱它為“完美拋物線”,如圖.

1)若,求的值;

2)若拋物線是“完美拋物線”,求的值;

3)若完美拋物線軸交于點(diǎn)E軸交于兩點(diǎn)(點(diǎn)D在點(diǎn)C的左側(cè)),頂點(diǎn)為點(diǎn),是以為直角邊的直角三角形,點(diǎn),求點(diǎn)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】機(jī)器人海寶在某圓形區(qū)域表演按指令行走,如圖所示,海寶從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點(diǎn)A處,再沿正南方向行走14米至點(diǎn)B處,最后沿正東方向行走至點(diǎn)C處,點(diǎn)B、C都在圓O.(本題參考數(shù)據(jù):sin67.4°=,cos67.4°=,tan67.4°=)

(1)求弦BC的長;

(2)請判斷點(diǎn)A和圓的位置關(guān)系,試說明理由.

查看答案和解析>>

同步練習(xí)冊答案