【題目】在平面直角坐標(biāo)系中表示下面各點:
A(0,3) B(1,-3) C(3,-5) D(-3,-5) E(3,5).連接CE,CD.
(1)A點到原點的距離是___個單位長度;B點到直線CD的距離是____個單位長度;
(2)將點C向x軸的負方向平移6個單位,它與點_______重合;
(3)直線CE與y軸的位置關(guān)系是_______;直線CE與x軸的位置關(guān)系是_______.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知長方形ABCD在平面直角坐標(biāo)系中的位置如圖所示,將長方形ABCD沿x軸向左平移到使點C與坐標(biāo)原點重合后,再沿y軸向下平移到使點D與坐標(biāo)原點重合,此時點A的坐標(biāo)是______,點B的坐標(biāo)是______,點C的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖a是一個長為2m,寬為2n的長方形,沿圖a中虛線用剪刀把它均分成四塊小長方形,然后按圖b的形狀拼成一個正方形.
(1)請用兩種不同的方法求圖b中陰影部分的面積:
方法1: ____ (只列式,不化簡)
方法2: ______ (只列式,不化簡)
(2)觀察圖b,寫出代數(shù)式(m+n)2,(m-n)2,mn之間的等量關(guān)系: ______ ;
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問題:若a+b=7,ab=5,
則(a-b)2= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小河邊有兩個村莊A、B,要在河邊建一自來水廠向A村與B村供水。
(1)若要使水廠到A、B村的距離相等,則應(yīng)選擇在哪建廠?
(2)若要使水廠到A、B村的水管最省料,應(yīng)建在什么地方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次演講比賽中,評委將從演講內(nèi)容、演講能力、演講效果三方面為選手打分,各項成績均按百分制,進入決賽的兩名選手的單項成績?nèi)缦卤硭荆?/span>
選手 | 演講內(nèi)容 | 演講能力 | 演講效果 |
甲 | 85 | 95 | 95 |
乙 | 95 | 85 | 95 |
(1)如果認為這三方面的成績同等重要,從他們的成績看,誰能勝出?
(2)如果按演講內(nèi)容占50%,演講能力占40%,演講效果占10%的比例計算甲、乙的平均成績,那么誰將勝出?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=12cm,點C是線段AB上的一點,BC=2AC.動點P從點A出發(fā),以3cm/s的速度向右運動,到達點B后立即返回,以3cm/s的速度向左運動;動點Q從點C出發(fā),以1cm/s的速度向右運動.設(shè)它們同時出發(fā),運動時間為ts.當(dāng)點P與點Q第二次重合時,P,Q兩點停止運動.
(1)AC= cm,BC= cm;
(2)當(dāng)t為何值時,AP=PQ;
(3)當(dāng)t為何值時,P與Q第一次相遇;
(4)當(dāng)t為何值時,PQ=1cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),是兩個全等的直角三角形(直角邊分別為a,b,斜邊為c).
(1)用這樣的兩個三角形構(gòu)造成如圖(2)的圖形(B,E,C三點在一條直線上),利用這個圖形,求證:a2+b2=c2
(2)當(dāng)a=1,b=2時,將其中一個直角三角形放入平面直角坐標(biāo)系中(如圖(3)),使直角頂點與原點重合,兩直角邊a,b分別與x軸、y軸重合.
請在坐標(biāo)軸上找一點C,使△ABC為等腰三角形.
寫出一個滿足條件的在x軸上的點的坐標(biāo): ;
寫出一個滿足條件的在y軸上的點的坐標(biāo): ,這樣的點有 個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某科技有限公司準(zhǔn)備購進A和B兩種機器人來搬運化工材料,已知購進A種機器人2個和B種機器人3個共需16萬元,購進A種機器人3個和B種機器人2個共需14萬元,請解答下列問題:
(1)求A、B兩種機器人每個的進價;
(2)已知該公司購買B種機器人的個數(shù)比購買A種機器人的個數(shù)的2倍多4個,如果需要購買A、B兩種機器人的總個數(shù)不少于28個,且該公司購買的A、B兩種機器人的總費用不超過106萬元,那么該公司有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組對邊平行,另一組對邊相等且不平行的四邊形叫做等腰梯形.
(1)類比研究
我們在學(xué)完平行四邊形后,知道可以從對稱性、邊、角和對角線四個角度對四邊形進行研究,完成表.
四邊形 | 對稱性 | 邊 | 角 | 對角線 |
平行 | . | 兩組對邊分別平行,兩組對邊分別相等. | 兩組對角 | 對角線互相平分. |
等腰 | 軸對稱圖形,過平行的一組對邊中點的直線是它的對稱軸. | 一組對邊平行,另一組對邊相等. | . | . |
(2)演繹論證
證明等腰梯形有關(guān)角和對角線的性質(zhì).
已知:在等腰梯形ABCD中,AD∥BC,AB=DC,AC、BD是對角線.
求證:
證明:
揭示關(guān)系
我們可以用圖來揭示三角形和一些特殊三角形之間的關(guān)系.
(3)請用類似的方法揭示四邊形、對角線相等的四邊形、平行四邊形、矩形以及等腰梯形之間的關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com