【題目】如圖,在平面直角坐標系中,點A的坐標為(1,),以原點O為中心,將點A順時針旋轉(zhuǎn)150°得到點A′,則點A′的坐標為( )

A.(0,﹣2)B.(1,﹣)C.(20)D.(,﹣1)

【答案】D

【解析】

ABy軸于點B,A′Cx軸于C,可得AB1、OB,根據(jù)正切的定義可得∠AOB30°,由將點A順時針旋轉(zhuǎn)150°得到點A′可得∠AOA=150°OA′OA2,可求出∠A′OC=30°,根據(jù)∠A′OC的正弦值和余弦值即可求出A′COC的長,即可得答案.

ABy軸于點B,A′Cx軸于C,

A-1

AB1、OB

tanAOB,

∴∠AOB30°

∵將點A順時針旋轉(zhuǎn)150°得到點A′,

∴∠AOA′=150°,

∴∠A′OC=AOA′-BOC-AOB=30°,OA′OA2,

A′COA′×sin30°=1OCOA′×cos30°=,

A′(,﹣1),

故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】關公,作為運城乃至山西的一張名片,吸引了來自世界各地的游客,在運城西南公里的常平村(關公故鄉(xiāng))南山上,有一尊巨型關公銅像,高米,象征關公享年歲,底座的高度也有一定寓意.有一位游客,對此產(chǎn)生了興趣,想測量它的高度,由于游客無法直接到達銅像底部,因此該游客計劃借助坡面高度來測量它的高度.如圖,代表底座的高,坡頂與底座底部處在同一水平面上,該游客在斜坡底處測得該底座頂端的仰角為,然后他沿著坡度為的斜坡攀行了米,在坡頂處又測得該底座頂端的仰角為.求:

坡頂到地面的距離;

求底座的高度(結果精確到)

(參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一座人行天橋的引橋部分的示意圖,梯面AD、BE相互平行,且與地面成37°的夾角,DE是一段水平歇臺,離地面高度3米.已知天橋高度BC4.8米,引橋水平跨度AC8米,求梯面AD、BE及歇臺DE的長.(參考數(shù)據(jù):,結果保留兩位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠BAC=90°,AB=3,AC=4,點DBC的中點,將ABD沿AD翻折得到AED,連CE

1)求證:AD=ED

2)連接BE,猜想BEC的形狀,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若ABC內(nèi)一點P滿足∠PAC=PCB=PBA,則稱點PABC的布羅卡爾點,三角形的布羅卡爾點是法國數(shù)學家和數(shù)學教育家克雷爾首次發(fā)現(xiàn),后來被數(shù)學愛好者法國軍官布羅卡爾重新發(fā)現(xiàn),并用他的名字命名,布羅卡爾點的再次發(fā)現(xiàn),引發(fā)了研究三角形幾何的熱潮.已知ABC中,CA=CB,∠ACB=120°,PABC的布羅卡爾點,若PA=,則PB+PC=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰直角,點是斜邊上一點(不與重合),的外接圓的直徑.

1)求證:是等腰直角三角形;

2)若的直徑為2,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是正方形ABCD的邊DC上一點,把ADE順時針旋轉(zhuǎn)ABF的位置.

(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度是 度;

(2)若連結EF,則AEF是 三角形;并證明

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個等腰三角形的三邊長均滿足方程x2-6x+8=0,則此三角形的周長為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列調(diào)查中,適合采用全面調(diào)查(普查)方式的是(

A.對汀江流域水質(zhì)情況的調(diào)查B.對端午節(jié)期間市場上粽子質(zhì)量情況的調(diào)查

C.對某班名同學身高情況的調(diào)查D.對某類煙花爆竹燃放安全情況的調(diào)查

查看答案和解析>>

同步練習冊答案