【題目】如圖,經(jīng)過點(diǎn)A(0,-6)的拋物線y=x2+bx+c與x軸相交于B(-2,0),C兩點(diǎn).
(1)求此拋物線的函數(shù)關(guān)系式和頂點(diǎn)D的坐標(biāo);
(2)將(1)中求得的拋物線向左平移1個(gè)單位長度,再向上平移m(m>0)個(gè)單位長度得到新拋物線y1,若新拋物線y1的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(3)設(shè)點(diǎn)M在y軸上,∠OMB+∠OAB=∠ACB,直接寫出AM的長.
【答案】(1)拋物線的解析式:y=x2-2x-6,頂點(diǎn)D(2,-8);(2)3<m<8.(3)AM的長為4或2.
【解析】
試題(1)該拋物線的解析式中只有兩個(gè)待定系數(shù),只需將A、B兩點(diǎn)坐標(biāo)代入即可得解.
(2)首先根據(jù)平移條件表示出移動(dòng)后的函數(shù)解析式,從而用m表示出該函數(shù)的頂點(diǎn)坐標(biāo),將其代入直線AB、AC的解析式中,即可確定P在△ABC內(nèi)時(shí)m的取值范圍.
(3)先在OA上取點(diǎn)N,使得∠ONB=∠ACB,那么只需令∠NBA=∠OMB即可,顯然在y軸的正負(fù)半軸上都有一個(gè)符合條件的M點(diǎn);以y軸正半軸上的點(diǎn)M為例,先證△ABN、△AMB相似,然后通過相關(guān)比例線段求出AM的長.
試題解析:(1)將A(0,-6)、B(-2,0)代入拋物線y=x2+bx+c中,得:
,
解得.
∴拋物線的解析式:y=x2-2x-6=(x-2)2-8,頂點(diǎn)D(2,-8);
(2)由題意,新拋物線的解析式可表示為:y=(x-2+1)2-8+m,
即:y=(x-2+1)2-8+m.它的頂點(diǎn)坐標(biāo)P(1,m-8).
由(1)的拋物線解析式可得:C(6,0).
∴直線AB:y=-3x-6;直線AC:y=x-6.
當(dāng)點(diǎn)P在直線AB上時(shí),-3-6=m-8,解得:m=-1;
當(dāng)點(diǎn)P在直線AC上時(shí),1-6=m-8,解得:m=3;
又∵m>0,
∴當(dāng)點(diǎn)P在△ABC內(nèi)時(shí),3<m<8.
(3)由A(0,-6)、C(6,0)得:OA=OC=6,且△OAC是等腰直角三角形.
如圖,在OA上取ON=OB=2,則∠ONB=∠ACB=45°.
∴∠ONB=∠NBA+∠OAB=∠ACB=∠OMB+∠OAB,
即∠NBA=∠OMB.
如圖,在△ABN、△AM1B中,
∠BAN=∠M1AB,∠ABN=∠AM1B,
∴△ABN∽△AM1B,得:AB2=ANAM1;
由勾股定理,得AB2=(-2)2+(-6)2=40,
又∵AN=OA-ON=6-2=4,
∴AM1=40÷4=10,OM1=AM1-OA=10-6=4
OM2=OM1=4
AM2=OA-OM2=6-4=2.
綜上所述,AM的長為4或2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,4),B(7,0),C(7,4),連接AC,BC得到矩形AOBC,點(diǎn)D的邊AC上,將邊OA沿OD折疊,點(diǎn)A的對(duì)應(yīng)邊為A'.若點(diǎn)A'到矩形較長兩對(duì)邊的距離之比為1:3,則點(diǎn)A'的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AC為⊙O的直徑,點(diǎn)D在BC上,AC=CD,∠ACB=2∠BAD
(1)求證:AB與⊙O相切;
(2)連接OD,若tanB=,求tan∠ADO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AE是BC邊上的高線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過B,M 兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)F ,F(xiàn)B為⊙O的直徑.
(1)求證:AM是⊙O的切線
(2)當(dāng)BE=3,cosC=時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高淳固城湖大橋采用H型塔型斜拉橋結(jié)構(gòu)(如甲圖),圖乙是從圖甲抽象出的平面圖.測(cè)得拉索AB與水平橋面的夾角是45°,拉索CD與水平橋面的夾角是65°,兩拉索頂端的距離AC為2米,兩拉索底端距離BD為10米,請(qǐng)求出立柱AH的長(結(jié)果精確到0.1米).
(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E,F分別在BC和CD上,下列結(jié)論:①CE=CF;②BD=1+;③BE+DF=EF;④∠AEB=75°.其中正確的序號(hào)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),,反比例函數(shù)的圖象經(jīng)過矩形的頂點(diǎn),且交邊于點(diǎn),若為的中點(diǎn),則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線M:y=-x2+2bx+c與直線l:y=9x+14交于點(diǎn)A,其中點(diǎn)A的橫坐標(biāo)為-2.
(1)請(qǐng)用含有b的代數(shù)式表示c: ;
(2)若點(diǎn)B在直線l上,且B的橫坐標(biāo)為-1,點(diǎn)C的坐標(biāo)為(b,5).
①若拋物線M還過點(diǎn)B,直接寫出該拋物線的解析式;
②若拋物線M與線段BC恰有一個(gè)交點(diǎn),結(jié)合函數(shù)圖象,直接寫出b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com