【題目】如圖,將沿過點的直線折疊,使點落到邊上的處,折痕交邊于點,連接.

1)求證:四邊形是平行四邊形;

2)若平分,求證:.

【答案】(1)詳見解析;(2)詳見解析.

【解析】

1)利用翻折變換的性質(zhì)以及平行線的性質(zhì)得出∠DAE=EAD′=DEA=D′EA,進(jìn)而利用平行四邊形的判定方法得出四邊形DAD′E是平行四邊形,進(jìn)而求出四邊形BCED′是平行四邊形;

2)利用平行線的性質(zhì)結(jié)合勾股定理得出答案.

1)∵將ABCD沿過點A的直線l折疊,使點D落到AB邊上的點D′處,

∴∠DAE=D′AE,∠DEA=D′EA,∠D=AD′E,

DEAD′,

∴∠DEA=EAD′,

∴∠DAE=EAD′=DEA=D′EA,

∴∠DAD′=DED′,

∴四邊形DAD′E是平行四邊形,

DE=AD′,

∵四邊形ABCD是平行四邊形,

ABDC,

CE D′B

∴四邊形BCED′是平行四邊形;

2)∵BE平分∠ABC

∴∠CBE=EBA,

ADBC,

∴∠DAB+CBA=180°,

∵∠DAE=BAE,

∴∠EAB+EBA=90°,

∴∠AEB=90°

AB2=AE2+BE2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種蔬菜的銷售單價y1與銷售月份x之間的關(guān)系如圖1所示,成本y2與銷售月份x之間的關(guān)系如圖2所示(圖1的圖象是線段,圖2的圖象是拋物線)

(1)已知6月份這種蔬菜的成本最低,此時出售每千克的收益是多少元?(收益=售價﹣成本)

(2)哪個月出售這種蔬菜,每千克的收益最大?簡單說明理由.

(3)已知市場部銷售該種蔬菜4、5兩個月的總收益為22萬元,且5月份的銷售量比4月份的銷售量多2萬千克,求4、5兩個月的銷售量分別是多少萬千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:(1)3x2-5x+2=0;(2)(7x+3)2=2(7x+3);

(3)t2t-=0;(4)(y+1)(y-1)=2y-1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3 月初某商品價格上漲,每件價格上漲 20%.用 3000 元買到的該商品 件數(shù)比漲價前少 20 件.3 月下旬該商品開始降價,經(jīng)過兩次降價后,該商品價格為每 件 19.2 元.

(1)求 3 月初該商品上漲后的價格;

(2)若該商品兩次降價率相同,求該商品價格的平均降價率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形OABC的邊長為6,點AC分別在x軸,y軸的正半軸上,點D20)在OA上,POB上一動點,則PA+PD的最小值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形 ABCD 的邊長為 2,以點 A 為圓心,1 為半徑作圓,點 E 是⊙A 上的任意 一點,點 E 繞點 D 按逆時針方向轉(zhuǎn)轉(zhuǎn) 90°,得到點 F,接 AF,則 AF 的最大值是______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形 ABCD 的對角線交于點 E,且 AEECBEED,以 AD 為直徑的半圓過點 E,圓心 O

1)如圖①,求證:四邊形 ABCD 為菱形;

2)如圖②,若 BC 的延長線與半圓相切于點 F,且直徑 AD6,求AE 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC底邊BC上的高為16 cm,當(dāng)BC的長xcm)從小到大變化時,△ABC的面積ycm2)也隨之發(fā)生變化.

1)在這個變化過程中,常量是________,自變量是________,因變量是_________;

2)寫出yx之間的關(guān)系式為_______________;

3)當(dāng)x5 cm時,y=________cm2;當(dāng)x15 cm時,y=________cm2yx的增大而__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】時代中學(xué)從學(xué)生興趣出發(fā),實施體育活動課走班制.為了了解學(xué)生最喜歡的一種球類運動,以便合理安排活動場地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運動的1200名學(xué)生中,隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查(每人只能在這五種球類運動中選擇一種).調(diào)查結(jié)果統(tǒng)計如下:

球類名稱

乒乓球

羽毛球

排球

籃球

足球

人數(shù)

42

15

33

解答下列問題:

(1)這次抽樣調(diào)查中的樣本是________;

(2)統(tǒng)計表中,________,________;

(3)試估計上述1200名學(xué)生中最喜歡乒乓球運動的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案