【題目】動畫片《小豬佩奇》風(fēng)靡全球,受到孩子們的喜愛,現(xiàn)有4張(小豬佩奇)角色卡片,分別是A佩奇.B喬治.C佩奇媽媽.D佩奇爸爸(四張卡片除字母和內(nèi)容外,其余完全相同)姐弟兩人做游戲,他們講這四張卡片混在一起,背面朝上放好.
(1)姐姐從中隨機(jī)抽取一張,求恰好抽到A佩奇的概率;
(2)若兩人分別隨機(jī)抽取一張卡片(不放回),請用列表或畫樹狀圖的方法求出恰好姐姐抽到A佩奇,弟弟抽到B喬治的概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一塊含有45°的三角板ABC的頂點A放在⊙O上,且AC與⊙O相切于點A(如圖1),將△ABC從點A開始,繞著點A順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°<α<135°),旋轉(zhuǎn)后,AC、AB分別與⊙O交于點E,F,連接EF(如圖2).已知AC=8,⊙O的半徑為4.
(1)在旋轉(zhuǎn)過程中,有以下幾個量:①弦EF的長;②的長;③∠AFE的度數(shù);④點O到EF的距離.其中不變的量是___________________(填序號);
(2)當(dāng)α=________°時,BC與⊙O相切(直接寫出答案);
(3)當(dāng)BC與⊙O相切時,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把某矩形紙片ABCD沿EF,GH折疊(點E,H在AD邊上,點F,G在BC邊上),使點B和點C落在AD邊上同一點P處,A點的對稱點為A′點,D點的對稱點為D′點,若∠FPG=90°,△A′EP的面積為5,△D′PH的面積為20,則矩形ABCD的面積等于_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt中,,點為邊上一個動點,過點作交邊于,過點作射線交邊于點,交射線于點,聯(lián)結(jié).設(shè)兩點的距離為,兩點的距離為.
(1)求證:;
(2)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;
(3)點在運動過程中,能否構(gòu)成等腰三角形?如果能,請直接寫出的長,如果不能,請簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸、軸分別交于點、,拋物線經(jīng)過、兩點,且對稱軸為直線.
(1)求拋物線的表達(dá)式;
(2)如果點是這拋物線上位于軸下方的一點,且△的面積是.求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,以點M(0, )為圓心,以 長為半徑作⊙M交x軸于A,B兩點,交y軸于C,D兩點,連接AM并延長交⊙M于P點,連接PC交x軸于E.
(1)求出CP所在直線的解析式;
(2)連接AC,請求△ACP的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為1,A,P,B,C是⊙O上的四個點.∠APC=∠CPB=60°.
(1)判斷△ABC的形狀: ;
(2)試探究線段PA,PB,PC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當(dāng)點P位于的什么位置時,四邊形APBC的面積最大?求出最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,的頂點E,F分別在BC,CD邊上,高AG與正方形的邊長相等,求的度數(shù).
如圖,在中,,,點M,N是BD邊上的任意兩點,且,將繞點A逆時針旋轉(zhuǎn)至位置,連接NH,試判斷MN,ND,DH之間的數(shù)量關(guān)系,并說明理由.
在圖中,連接BD分別交AE,AF于點M,N,若,,,求AG,MN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com