【題目】(操作發(fā)現(xiàn))三角形三個頂點與重心的連線段,將該三角形面積三等分.
(1)如圖①:中,中線、、相交于點.求證:.
(提出問題)如圖②,探究在四邊形中,是邊上任意一點,與和的面積之間的關系.
(2)為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
如圖③,當時,探求與和之間的關系,寫出求解過程.
(問題解決)
(3)推廣,當(表示正整數(shù))時,直接寫出與和之間的關系:____________.
(4)一般地,當時,與和之間的關系式為:____________.
【答案】(1)詳見解析;(2);(3);(4).
【解析】
(1)利用三角形的中線的性質(zhì),解決問題即可.
(2)結(jié)論:.根據(jù)S△PBC=S四邊形ABCD-S△ABP-S△CDP=S四邊形ABCD-S△ABD-S△CDA=S四邊形ABCD-(S四邊形ABCD-S△DBC)-(S四邊形ABCD-S△ABC)化簡計算即可.
(3)根據(jù),△ABP和△ABD的高相等,得到,根據(jù)△CDP和△CDA的高相等,得到,整理即可;
(4)與(3)的解答方法類似,計算即可.
(1)證明:如圖①中,
∵BD=CD,
∵G是重心,
∴AG=2DG,
(2)結(jié)論:;
理由:如圖③中,
當時,
∵,和的高相等,
∴,
∵,和的高相等,
∴.
∴
.
(3)結(jié)論:;
理由:
∵,和的高相等,
∴.
又∵,和的高相等,
∴,
∴
.
∴.
故答案為:
(4)結(jié)論:.
理由是:
∵,和的高相等,
∴.
又∵,和的高相等,
∴,
∴
.
∴.
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有紅、黑兩種顏色的球共30只,這些球除顏色外其余完全相同,為了估計紅球和黑球的個數(shù),七(1)班的數(shù)學學習小組做了摸球?qū)嶒?/span>.他們將球攪勻后,從盒子里隨機摸出一個球記下顏色,再把球放回盒子中,多次重復上述過程,得到下表中的一組統(tǒng)計數(shù)據(jù):
模球的次數(shù) | 50 | 100 | 300 | 500 | 800 | 1000 | 2000 |
摸到紅球的次數(shù) | 14 | 33 | 95 | 155 | 241 | 298 | 602 |
摸到紅球的頻率 | 0.28 | 0.33 | 0.317 | 0.31 | 0.301 | 0.298 | 0.301 |
(1)請估計:當次數(shù)足夠大時,摸到紅球的頻率將會接近______;(精確到0.1)
(2)假如你去摸一次,則估計摸到紅球的概率為______;
(3)試估算盒子里紅球的數(shù)量為______個,黑球的數(shù)量為______個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】松雷中學圖書館近日購進甲、乙兩種圖書,每本甲圖書的進價比每本乙圖書的進價高20元,花780元購進甲圖書的數(shù)量與花540元購進乙圖書的數(shù)量相同.
(1)求甲、乙兩種圖書每本的進價分別是多少元?
(2)松雷中學計劃購進甲、乙兩種圖書共70本,總購書費用不超過4000元,則最多購進甲種圖書多少本?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賓館有單人間、雙人間和三人間三種客房供游客租住,某旅行團有18人準備同時租用這三種客房共9間,且每個房間都住滿,則租房方案共有______種.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:,平分,點在射線上,、分別是射線、上的動點(、不與點重合),連接交射線于點.設.
(1)如圖1,若,則:①______;②當時,______.
(2)如圖2,若,垂足為,則是否存在這樣的的值,使得中存在兩個相等的角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:對于一些次數(shù)較高或者是比較復雜的式子進行因式分解時,換元法是一種常用的方法,下面是某同學用換元法對多項式進行因式分解的過程.
解:設
原式(第一步)
(第二步)
(第三步)
(第四步)
回答下列問題:
(1)該同學第二步到第三步運用了因式分解的__________(填代號).
A.提取公因式 B.平方差公式
C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)按照“因式分解,必須進行到每一個多項式因式都不能再分解為止”的要求,該多項式分解因式的最后結(jié)果為______________.
(3)請你模仿以上方法對多項式進行因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形紙片ABCD的邊長為12,E,F分別是邊AD,BC上的點,將正方形紙片沿EF折疊,使得點A落在CD邊上的點A′處,此時點B落在點B′處.已知折痕EF=13,則AE的長等于_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2+(2k+1)x+k2+1=0有兩個不等實根x1、x2
(1)求實數(shù)k的取值范圍。
(2)若方程兩實根x1、x2滿足x1+x2=﹣x1x2,求k的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填在相應的大括號里,π,﹣1,0,+6,﹣1.08,10%,0.303003…,﹣,0.;自然數(shù)集合:{_____……}正數(shù)集合:{_____……}非正整數(shù)集合:{_____……}分數(shù)集合:{_____……}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com