精英家教網 > 初中數學 > 題目詳情
如圖,在平面直角坐標系中,已知OA=2,OC=4,⊙M與軸相切于點C,與軸交于A,B兩點,∠ACD=90°,拋物線經過A,B,C三點.
(1)求證:∠CAO=∠CAD;
(2)求弦BD的長;
(3)在拋物線的對稱軸上是否存在點P使ΔPBC是以BC為腰的等腰三角形?若存在,求出點P的坐標;若不存在,請說明理由.
(1)證明見解析;(2)8;(3),,

試題分析:(1)利用切線的性質性質得出∠MCO=90°,進而得出∠OCA=∠MCD=∠MDC,再利用∠OCA+∠OAC=90°求出即可;
(2)利用圓周角定里以及平行線的性質,首先得出四邊形COMN為矩形,進而求出BD=2MN;
(3)分別利用當CP=CB時,△PCB為等腰三角形,當BP=BC時,△PCB為等腰三角形,利用勾股定理求出即可.
(1)證明:如圖1,連接MC,
∵⊙M與y軸相切于點C,∴CM⊥OC,
∴∠MCO=90°,
又∵∠ACD=90°
∴AD為⊙M的直徑,
∵DM=CM,∠ACD+∠ADC=90°
∴∠MCD=∠MDC,
∵∠OCA+∠ACM=∠OCM=90°
∴∠MCD+∠ACM=90°
∴∠OCA=∠MCD=∠MDC
∵∠OCA+∠OAC=90°
∴∠OAC=∠CAD;

(2)解:如圖1,過點M作MN⊥OB于點N,
由(1)可知,AD是⊙M的直徑,
∴∠ABD=90°,
∵MN⊥AB,∴∠MNA=90°,
∴MN∥BD,
,
∵∠OCM=∠CON=∠MNO=90°,
∴四邊形COMN為矩形,
∴MN=CO=4,
∴BD=2MN=8;
(3)解:拋物線的對稱軸上存在點P,使ΔPBC是以BC為腰的等腰三角形.
在⊙M中,弧AC=弧AC,∴∠ADC=∠ABC,
由(1)知,∠ADC=∠OCA,
∴∠OCA=∠OBC
在Rt△CAO和Rt△BOC中,
tan∠OCA=
∴tan∠OBC=
∴OB=2OC=8
∴A(2,0),B(8,0)
∵拋物線經過A,B兩點,
∴A,B關于拋物線的對稱軸對稱,其對稱軸為直線:;
當CP=CB=5時,△PCB為等腰三角形,
在Rt△COB中,
如圖,在Rt△CM中,

80-25=55
,

同理可求的坐標是 
當BP=BC=5時,△PCB為等腰三角形,

 
同理可得坐標為
∴符合條件的點P有四個,坐標分別為,,
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,直線與拋物線y=ax2+bx-3(a≠0)交于A、B兩點,點A在x軸上,點B的縱坐標為5.點P是直線AB下方的拋物線上的一動點(不與點A、B重合),過點P作x軸的垂線交直線AB于點C,作PD⊥AB于點D.
(1)求拋物線的解析式;
(2)設點P的橫坐標為m.
①用含m的代數式表示線段PD的長,并求出線段PD長的最大值;
②連結PB,線段PC把△PDB分成兩個三角形,是否存在適合的m的值,使這兩個三角形的面積比為1:2.若存在,直接寫出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖, 已知拋物線與y軸相交于C,與x軸相交于A、B,點A的坐標為(2,0),點C的坐標為(0,-1)。
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連結DC,當△DCE的面積最大時,求點D的坐標;
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形,若存在,求點P的坐標,若不存在,說明理由。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,拋物線過點,這條拋物線的對稱軸與x軸交于點C,點P為射線CB上一個動點(不與點C重合),點D為此拋物線對稱軸上一點,且?CPD=
(1)求拋物線的解析式;
(2)若點P的橫坐標為m,△PCD的面積為S,求S與m之間的函數關系式;
(3)過點P作PE⊥DP,連接DE,F為DE的中點,試求線段BF的最小值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物線經過A、C兩點.
(1)求拋物線的解析式及其頂點坐標;
(2)如圖①,點P是拋物線上位于x軸下方的一點,點Q與點P關于拋物線的對稱軸對稱,過點P、Q分別向x軸作垂線,垂足為點D、E,記矩形DPQE的周長為d,求d的最大值,并求出使d最大值時點P的坐標;
(3)如圖②,點M是拋物線上位于直線AC下方的一點,過點M作MF⊥AC于點F,連接MC,作MN∥BC交直線AC于點N,若MN將△MFC的面積分成2:3兩部分,請確定M點的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

方程x2+2x-1=0的根可看成函數y=x+2與函數的圖象交點的橫坐標,用此方法可推斷方程x3+x-1=0的實數根x所在范圍為( )
A.B.C.D.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知二次函數y=a(x2-6x+8)(a>0)的圖象與x軸交于點A、B兩點,與y軸交于點C.
(1)求A、B兩點的坐標;
(2)若S△ABC=8,則過A、B、C三點的圓是否與拋物線有第四個交點D?若存在,求出D點坐標;若不存在,說明理由.
(3)將△OAC沿直線AC翻折,點O的對應點為O'.
①若O'落在該拋物線的對稱軸上,求實數a的值;
②是否存在正整數a,使得點O'落在△ABC的內部,若存在,求出整數a的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知某商品的進價為每件40元,售價是每件60元,每星期可賣出300件。市場調查反映:如調整價格 ,每漲價一元,每星期要少賣出10件。該商品應定價為多少元時,商場能獲得最大利潤?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

已知:M、N兩點關于y軸對稱,且點M在雙曲線上,點N在直線上,設點M的坐標為,則二次函數(      )
A.有最大值,最大值為B.有最大值,最大值為
C.有最小值,最小值為D.有最小值,最小值為

查看答案和解析>>

同步練習冊答案