【題目】如圖,ABO直徑,ACO的弦,過O外的點(diǎn)DDEOA于點(diǎn)E,交AC于點(diǎn)F,連接DC并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)P,且D=2∠A,作CHAB于點(diǎn)H

1)判斷直線DCO的位置關(guān)系,并說明理由;

2)若HB=2,cosD=,請(qǐng)求出AC的長(zhǎng).

【答案】1DC與⊙O相切;(2

【解析】試題分析:(1)連接OC,易證COB=∠D,由于P+∠D=90°,所以P+∠COB=90°,從而可知半徑OCDC;

2)由(1)可知:cosCOP=cosD=,設(shè)半徑為r,所以OH=r2,從而可求出r的值,利用勾股定理即可求出CH的長(zhǎng)度,從而可求出AC的長(zhǎng)度.

試題解析:解:(1DCO相切.理由如下:

連接OC,∵∠COB=2∠A,D=2∠A,∴∠COB=∠DDEAP,∴∠DEP=90°,在Rt△DEP中,DEP=90°,∴∠P+∠D=90°,∴∠P+∠COB=90°,∴∠OCP=90°半徑OCDC,DCO相切.

2)由(1)可知:OCP=90°COP=DcosCOP=cosD=CHOP,∴∠CHO=90°,設(shè)O的半徑為r,則OH=r2RtCHO中,cosHOC===r=5,OH=52=3,由勾股定理可知:CH=4,AH=ABHB=102=8

RtAHC中,CHA=90°,由勾股定理可知:AC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,若點(diǎn)A(a,1)在第二象限,則點(diǎn)B(a0)(  )

A.x軸正半軸上B.x軸負(fù)半軸上C.y軸正半軸上D.y軸負(fù)半軸上

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1如圖,A=∠D=90°BE平分∠ABC,且點(diǎn)EAD的中點(diǎn),求證BC=AB+CD

2如圖,ACB和△ECD都是等邊三角形,點(diǎn)A、D、E在同一直線上,連接BE

求證AD=BE;

求∠AEB的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀理解下面的例題,再按要求解答下列問題:

例題:求代數(shù)式y2+4y+8的最小值.

解:y2+4y+8=y2+4y+4+4=(y+2)2+4

y+2)2≥0

y+2)2+4≥4

y2+4y+8的最小值是4.

(1)求代數(shù)式m2+m+4的最小值;

(2)求代數(shù)式4﹣x2+2x的最大值;

(3)某居民小區(qū)要在一塊一邊靠墻(墻長(zhǎng)15m)的空地上建一個(gè)長(zhǎng)方形花園ABCD,花園一邊靠墻,另三邊用總長(zhǎng)為20m的柵欄圍成.如圖,設(shè)AB=x(m),請(qǐng)問:當(dāng)x取何值時(shí),花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AC,DE垂直平分ABAC、ABE、D兩點(diǎn),若AB=12cm,BC=10cm,A=50°,求BCE的周長(zhǎng)和∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一根木條固定在墻上,至少要釘____根釘子,根據(jù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,房間內(nèi)有一架梯子斜靠在墻上,梯子頂端距地面的垂直距離MAa米,此時(shí)梯子的傾斜角為75°,若梯子斜靠在另一面墻時(shí),頂端距地面的垂直距離NBb米,梯子的傾斜角為45°,則這個(gè)房間的寬AB是多少米?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(-0.25100×4100_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形ABCD中,AB8cm,BC=6cm,點(diǎn)ECD邊上的一點(diǎn),且DE=2cm,動(dòng)點(diǎn)PA點(diǎn)出發(fā),以2cm/s的速度沿ABCE運(yùn)動(dòng),最終到達(dá)點(diǎn)E.當(dāng)△APE的面積等于20cm2時(shí),求點(diǎn)P運(yùn)動(dòng)的時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案