【題目】如圖,△ABC中,∠C=90°,AB=13,AC=5,BC=12,點O為∠ABC與∠CAB平分線的交點,則點O到邊AB的距離為______.
【答案】2
【解析】
作OE⊥BC,OF⊥AC,根據垂直定義得出∠C=∠CFO=∠OEC=90°,即可推出四邊形CFOE是矩形,根據角平分線性質求出OE=OF=OP,即可推出矩形CFOE是正方形,設OE=OP=OF=x,則AP=AF=5-x,BP=BE=12-x,根據PA+PB=AB=13,列出等式即可解得.
解:如圖:設點O到邊AB的距離為OP
作OE⊥BC,OF⊥AC,
∴∠C=∠CFO=∠OEC=90°,
∴四邊形CFOE是矩形;
∵∠CAB,∠CBA的平分線相交于點O,OE⊥BC,OF⊥AC,OP⊥AB,
∴OE=OP=OF,
∴四邊形CFOE是正方形,
設OE=OP=OF=x,則AP=AF=5-x,BP=BE=12-x,
∴5-x+12-x=13,
解得x=2,
∴OP=OE=2.
故答案為2.
科目:初中數學 來源: 題型:
【題目】東東玩具商店用500元購進一批悠悠球,很受中小學生歡迎,悠悠球很快售完,接著又用900元購進第二批這種悠悠球,所購數量是第一批數量的1.5倍,但每套進價多了5元.
(1)求第一批悠悠球每套的進價是多少元;
(2)如果這兩批悠悠球每套售價相同,且全部售完后總利潤不低于25%,那么每套悠悠球的售價至少是多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB∥CD.
(1)用直尺和圓規(guī)按要求作圖:作∠ACD的平分線CP,CP交AB于點P;作AF⊥CP,垂足為F.
(2)判斷直線AF與線段CP的關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,已知AB=3,點E,F(xiàn)分別在BC、CD上,且∠BAE=30°,∠DAF=15°,則△AEF的面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數分布表和統(tǒng)計圖,請你根據圖表中的信息完成下列問題:
分 組 | 頻數 | 頻率 |
第一組(0≤x<15) | 3 | 0.15 |
第二組(15≤x<30) | 6 | a |
第三組(30≤x<45) | 7 | 0.35 |
第四組(45≤x<60) | b | 0.20 |
(1)頻數分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;
(2)如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?
(3)已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據平行線與等腰三角形的性質,易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據相似三角形的對應邊成比例,即可求得的長,然后利用三角函數的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在五一期間,小明、小亮等同學隨家長一同到某公園游玩,下面是購買門票時,小明與他爸爸的對話(如圖),試根據圖中的信息,解答下列問題:
(1)小明他們一共去了幾個成人,幾個學生?
(2)請你幫助小明算一算,用哪種方式購票更省錢?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某經銷商銷售一種產品,這種產品的成本價為10元/千克,市場調查發(fā)現(xiàn),該產品每天的銷售量y(千克)與銷售價x(元/千克,且10≤x≤18)之間的函數關系如圖所示:
(1)求y(千克)與銷售價z的函數關系式;
(2)該經銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內部有一動點P滿足S△PAB=S矩形ABCD,則點P到A、B兩點的距離之和PA+PB的最小值為______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com