【題目】下列計算正確的是( )
A. a2·a3=a6 B. (-2ab)2=4a2b2 C. (a2)3=a5 D. a6÷a3=a2
科目:初中數(shù)學(xué) 來源: 題型:
【題目】46中8年級11班為開展“迎2013年新春”的主題班會活動,派了小林和小明兩位同學(xué)去學(xué)校附近的超市購買鋼筆作為獎品,已知該超市的英雄牌鋼筆每支8元,派克牌鋼筆每支4.8元,他們要購買這兩種筆共40支.
(1)如果他們兩人一共帶了240元,全部用于購買獎品,那么能買這兩種筆各多少支?
(2)小林和小明根據(jù)主題班會活動的設(shè)獎情況,決定所購買的英雄牌鋼筆數(shù)量要少于派克牌鋼筆的數(shù)量的,但又不少于派克牌鋼筆的數(shù)量的。如果他們買了英雄牌鋼筆支,買這兩種筆共花了元,
①請寫出(元)關(guān)于(支)的函數(shù)關(guān)系式,并求出自變量的取值范圍;
②請幫他們計算一下,這兩種筆各購買多少支時,所花的錢最少,此時花了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,即如圖①,我們將這種變換記為[θ,n].
(1)、如圖①,對△ABC作變換[50°,]得△AB′C′,則S△AB′C′:S△ABC= ;直線BC與直線B′C′所夾的銳角為 度;
(2)、如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得△AB'C',使點B、C、C′在同一直線上,且四邊形ABB'C'為矩形,求θ和n的值;
(3)、如圖③,△ABC中,AB=AC,∠BAC=36°,BC=l,對△ABC作變換[θ,n]得△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB'C'為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,某超市從一樓到二樓有一自動扶梯,圖2是側(cè)面示意圖.已知自動扶梯AB的坡度為1:2.4,AB的長度是13米,MN是二樓樓頂,MN∥PQ,C是MN上處在自動扶梯頂端B點正上方的一點,BC⊥MN,在自動扶梯底端A處測得C點的仰角為42°,求二樓的層高BC約為多少米?( sin42°≈0.7,tan42°≈0.9)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】宜興緊靠太湖,所產(chǎn)百合有“太湖人參”之美譽,今年百合上市后,甲、乙兩超市分別用12000元以相同的進價購進質(zhì)量相同的百合,甲超市銷售方案是:將百合按分類包裝銷售,其中挑出優(yōu)質(zhì)的百合400千克,以進價的2倍價格銷售,剩下的百合以高于進價10%銷售.乙超市的銷售方案是:不將百合分類,直接包裝銷售,價格按甲超市分類銷售的兩種百合單價和的一半定價.若兩超市將百合全部售完,其中甲超市獲利8400元(其它成本不計).問:
(1)百合進價為每千克多少元?
(2)乙超市獲利多少元?并比較哪種銷售方式更合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺進價分別為200元、170元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:
(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A、B兩種型號的電風(fēng)扇的銷售單價;
(2)若超市準(zhǔn)備用不多于5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?
(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com