【題目】如圖,在平面直角坐標系中,已知正方形ABCO,A(0,3),點D為x軸上一動點,以AD為邊在AD的右側作等腰Rt△ADE,∠ADE=90°,連接OE,則OE的最小值為( )
A. B. C. 2D. 3
【答案】A
【解析】
根據(jù)全等三角形的判定先求證△ADO≌△DEH,然后再根據(jù)等腰直角三角形中等邊對等角求出∠ECH=45°,再根據(jù)點在一次函數(shù)上運動,作OE′⊥CE,求出OE′即為OE的最小值.
解:如圖,作EH⊥x軸于H,連接CE.
∵∠AOD=∠ADE=∠EHD=90°,
∴∠ADO+∠EDH=90°,∠EDH+∠DEH=90°,
∴∠ADO=∠DEH,
∵AD=DE,
∴△ADO≌△DEH(AAS),
∴OA=DH=OC,OD=EH,
∴OD=CH=EH,
∴∠ECH=45°,
∴點E在直線y=x﹣3上運動,作OE′⊥CE,則△OCE′是等腰直角三角形,
∵OC=3,
∴OE′= ,
∴OE的最小值為 .
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】把邊長為2厘米的6個相同正方體擺成如圖的形式.
(1)畫出該幾何體的主視圖、左視圖、俯視圖;
(2)試求出其表面積;
(3)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的左視圖和俯視圖不變,那么最多可以再添加 個小正方體.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】紀中三鑫雙語學校準備開展“陽光體育活動”,決定開設足球、籃球、乒乓球、羽毛球、排球等球類活動,為了了解學生對這五項活動的喜愛情況,隨機調(diào)查了m名學生(每名學生必選且只能選擇這五項活動中的一種).
根據(jù)以上統(tǒng)計圖提供的信息,請解答下列問題:
(1)m= ,n= .
(2)補全上圖中的條形統(tǒng)計圖.
(3)在抽查的m名學生中,有小薇、小燕、小紅、小梅等10名學生喜歡羽毛球活動,學校打算從小薇、小燕、小紅、小梅這4名女生中,選取2名參加全市中學生女子羽毛球比賽,請用列表法或畫樹狀圖法,求同時選中小紅、小燕的概率.(解答過程中,可將小薇、小燕、小紅、小梅分別用字母A、B、C、D代表)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,AB=8,點P在邊CD上,tan∠PBC=,點Q是在射線BP上的一個動點,過點Q作AB的平行線交射線AD于點M,點R在射線AD上,使RQ始終與直線BP垂直.
(1)如圖1,當點R與點D重合時,求PQ的長;
(2)如圖2,試探索: 的比值是否隨點Q的運動而發(fā)生變化?若有變化,請說明你的理由;若沒有變化,請求出它的比值;
(3)如圖3,若點Q在線段BP上,設PQ=x,RM=y,求y關于x的函數(shù)關系式,并寫出它的定義域.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了更好地服務學生,了解學生對學校管理的意見和建議,該校團委發(fā)起了“我給學校提意見”的活動,某班團支部對該班全體團員在一個月內(nèi)所提意見的條數(shù)的情況進行了統(tǒng)計,并制成了如下兩幅不完整的統(tǒng)計圖:
(1)該班的團員有 名,在扇形統(tǒng)計圖中“2條”所對應的圓心角的度數(shù)為 ;
(2)求該班團員在這一個月內(nèi)所提意見的平均條數(shù)是多少?并將該條形統(tǒng)計圖補充完整;
(3)統(tǒng)計顯示提3條意見的同學中有兩位女同學,提4條意見的同學中也有兩位女同學.現(xiàn)要從提了3條意見和提了4條意見的同學中分別選出一位參加該校團委組織的活動總結會,請你用列表或畫樹狀圖的方法,求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,AB的垂直平分線分別交AB、AC于點D、E,則以下AE與CE的數(shù)量關系正確的是( 。
A.AE=CEB.AE=CEC.AE=CED.AE=2CE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A、B坐標分別為A(0,a)、B(b,a),且a,b滿足:(a-3)2+=0,現(xiàn)同時將點A、B分別向下平移3個單位,再向左平移1個單位,分別得到點A、B的對應點C、D,連接AC、BD、AB.
(1)求點C、D的坐標及四邊形ABDC的面積S四邊形ABDC;
(2)在y軸上是否存在點M,連接MC、MD,使S△MCD=四邊形ABDC?若存在這樣的點,求出點M的坐標;若不存在,試說明理由.
(3)點P是線段BD上的一個動點,連接PA、PO,當點P在BD上移動時(不與B、D重合),的值是否發(fā)生變化,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某通訊公司就上寬帶網(wǎng)推出A,B,C三種月收費方式.這三種收費方式每月所需的費用y(元與上網(wǎng)時間x(h)的函數(shù)關系如圖所示,則下列判斷錯誤的是
A. 每月上網(wǎng)時間不足25h時,選擇A方式最省錢 B. 每月上網(wǎng)費用為60元時,B方式可上網(wǎng)的時間比A方式多
C. 每月上網(wǎng)時間為35h時,選擇B方式最省錢 D. 每月上網(wǎng)時間超過70h時,選擇C方式最省錢
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA=OB=8,OD=1,點C為線段AB的中點
(1)直接寫出點C的坐標 ;
(2)求直線CD的解析式;
(3)在平面內(nèi)是否存在點F,使得以A、C、D、F為頂點的四邊形為平行四邊形?若存在,請求出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com