【題目】將108個蘋果放到一些盒子中,盒子有三種規(guī)格:一種可以裝10個蘋果,一種可以裝9個蘋果,一種可以裝6個蘋果,要求每種規(guī)格都要有且每個盒子均恰好裝滿,則不同的裝法總數(shù)為_____.
【答案】6.
【解析】
先列出方程10x+9y+6z=108,再根據(jù)x,y,z是正整數(shù),進(jìn)行計算即可得出結(jié)論.
解:設(shè)裝10個蘋果的有x盒,裝9個蘋果的有y盒,裝6個蘋果的有z盒,
∵每種規(guī)格都要有且每個盒子均恰好裝滿,
∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整數(shù),
則10x+9y+6z=108,
∴x==,
∵0<x<10,且為整數(shù),
∴36﹣3y﹣2z是10的倍數(shù),
即:36﹣3y﹣2z=10或20或30,
當(dāng)36﹣3y﹣2z=10時,y=,
∵0<y≤11,0<z≤15,且y,z都為整數(shù),
∴26﹣2z=3或6或9或12或15或18或21或24,
∴z=(舍)或z=10或z=(舍)或z=7或z=(舍)或z=4或z=(舍)或z=1,
當(dāng)z=10時,y=2,x=3,
當(dāng)z=7時,y=4,x=3,
當(dāng)z=4時,y=8,x=3
當(dāng)z=1時,y=8,x=3,
當(dāng)36﹣3y﹣2z=20時,y=,
∵0<y≤11,0<z≤15,且y,z都為整數(shù),
∴16﹣2z=3或6或9或12或15或18或21或24,
∴z=(舍)或z=5或z=(舍)或z=2或z=(舍)
當(dāng)z=5時,y=2,x=6,
當(dāng)z=2時,y=4,x=6,
當(dāng)36﹣3y﹣2z=30時,y=,
∵0<y≤11,0<z≤15,且y,z都為整數(shù),
∴6﹣2z=3,
∴z=(舍)
即:滿足條件的不同的裝法有6種,
故答案為6.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運(yùn)送,若兩車合作,各運(yùn)12趟才能完成,需支付運(yùn)費(fèi)共4 800元.若甲、乙兩車單獨(dú)運(yùn)完此堆垃圾,則乙車所運(yùn)趟數(shù)是甲車的2倍,已知乙車每趟運(yùn)費(fèi)比甲車少200元.
(1)分別求出甲、乙兩車每趟的運(yùn)費(fèi);
(2)若單獨(dú)租用甲車運(yùn)完此堆垃圾,需多少趟?
(3)若同時租用甲、乙兩車,則甲車運(yùn)x趟,乙車運(yùn)y趟,才能運(yùn)完此堆垃圾,其中x,y均為正整數(shù).
①當(dāng)x=10時,y= ;當(dāng)y=10時,x= ;
②用含x的代數(shù)式表示y;
探究:
(4)在(3)的條件下:
①用含x的代數(shù)式表示總運(yùn)費(fèi)w;
②要想總運(yùn)費(fèi)不大于4 000元,甲車最多需運(yùn)多少趟?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A,點(diǎn)C在反比例函數(shù)y=(k>0,x>0)的圖象上,AB⊥x軸于點(diǎn)B,OC交AB于點(diǎn)D,若CD=OD,則△AOD與△BCD的面積比為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“傳箴言”活動中,某班團(tuán)支部對該班全體團(tuán)員在一個月內(nèi)所發(fā)箴言條數(shù)的情況進(jìn)行了統(tǒng)計,并制成了如圖所示的兩幅不完整的統(tǒng)計圖:
(1)求該班團(tuán)員在這一個月內(nèi)所發(fā)箴言的平均條數(shù)是多少?并將該條形統(tǒng)計圖補(bǔ)充完整;
(2)如果發(fā)了3條箴言的同學(xué)中有兩位男同學(xué),發(fā)了4條箴言的同學(xué)中有三位女同學(xué).現(xiàn)要從發(fā)了3條箴言和4條箴言的同學(xué)中分別選出一位參加該校團(tuán)委組織的“箴言”活動總結(jié)會,請你用列表法或樹狀圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(1,2)且與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣1<x1<0.1<x2<2.下列結(jié)論:4a+2b+c<0;2a+b<0;b2+8a>4ac;
a<﹣1;其中結(jié)論正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)和縱坐標(biāo)相等的點(diǎn)叫“夢之點(diǎn)”,例如點(diǎn)(1,1),(﹣2,﹣2),,…都是“夢之點(diǎn)”,顯然“夢之點(diǎn)”有無數(shù)個.
(1)若點(diǎn)P(2,m)是反比例函數(shù)y=(n為常數(shù),n≠0)的圖象上的“夢之點(diǎn)”,求這個反比例函數(shù)的解析式;
(2)函數(shù)y=3kx+s﹣1(k,s為常數(shù))的圖象上存在“夢之點(diǎn)”嗎?若存在,請求出“夢之點(diǎn)”的坐標(biāo),若不存在,說明理由;
(3)若二次函數(shù)y=ax2+bx+1(a,b是常數(shù),a>0)的圖象上存在兩個“夢之點(diǎn)”A(x1,x1),B(x2,x2),且滿足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣b+,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖1,將三角板放在正方形上,使三角板的直角頂點(diǎn)與正方形的頂點(diǎn)重合,三角板的一邊交于點(diǎn).另一邊交的延長線于點(diǎn).
(1)觀察猜想:線段與線段的數(shù)量關(guān)系是 ;
(2)探究證明:如圖2,移動三角板,使頂點(diǎn)始終在正方形的對角線上,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立,請給予證明:若不成立.請說明理由:
(3)拓展延伸:如圖3,將(2)中的“正方形”改為“矩形”,且使三角板的一邊經(jīng)過點(diǎn),其他條件不變,若、,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解市民對全市創(chuàng)文工作的滿意程度,婁星區(qū)某中學(xué)數(shù)學(xué)興趣小組在婁底城區(qū)范圍內(nèi)進(jìn)行了抽樣調(diào)查,將調(diào)查結(jié)果分為非常滿意,滿意,一般,不滿意四類,回收、整理好全部問卷后,繪制了兩幅不完整的統(tǒng)計圖1、圖2,結(jié)合圖中信息,回答:
(1)此次共調(diào)查了多少名市民?
(2)將兩幅統(tǒng)計圖中不完整的部分補(bǔ)充完整;
(3)若我市城區(qū)共有480000人口,請估算我市對創(chuàng)文工作“非常滿意和滿意”的市民人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,半徑為1的動圓圓心M從A點(diǎn)出發(fā),沿著AB方向以1個單位長度/每秒的速度勻速運(yùn)動,同時動點(diǎn)N從點(diǎn)B出發(fā),沿著BD方向也以1個單位長度/每秒的速度勻速運(yùn)動,設(shè)運(yùn)動的時間為t秒(0≤t≤2.5),以點(diǎn)N為圓心,NB的長為半徑的⊙N與BD,AB的交點(diǎn)分別為E,F,連結(jié)EF,ME.
(1)①當(dāng)t= 秒時,⊙N恰好經(jīng)過點(diǎn)M;②在運(yùn)動過程中,當(dāng)⊙M與△ABD的邊相切時,t= 秒;
(2)當(dāng)⊙M經(jīng)過點(diǎn)B時,①求N到AD的距離;②求⊙N被AD截得的弦長;
(3)若⊙N與線段ME只有一個公共點(diǎn)時,直接寫出t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com