【題目】如圖,已知二次函數(shù)yax2bx+3的圖像經(jīng)過點A(1,0),B(-2,3).

(1)求該二次函數(shù)的表達式;

(2)求該二次函數(shù)的最大值

(3)結(jié)合圖像,解答問題當(dāng)y>3x的取值范圍是

【答案】(1)y=-x2-2x+3;(2)當(dāng)x=-1時,該二次函數(shù)的最大值為4;(3)-2<x<0.

【解析】

A、B坐標(biāo)代入二次函數(shù)解析式中,聯(lián)立求出ab的值,即可確定出二次函數(shù)解析式;

將其改寫成頂點式即可得;

B(-23)和函數(shù)表達式結(jié)合圖像即可得.

(1)將 A(1,0),B(-2,3)代入yax2bx+3中得:

,

解得:

該二次函數(shù)的表達式為y=-x22x3

2)∵y=-x22x3=-(x+12+4

∴當(dāng)x=-1時,該二次函數(shù)的最大值為4

3)令y=-x22x3=3

解得x1=-2,x2=0

故當(dāng)y3時,-2x0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-x2+2x+3與x軸交于A、B兩點,與y軸交于點C,點D為拋物線的頂點,點P為第一象限拋物線上一點,且∠DAP=45°,則點P的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長AD為⊙O 的直徑,E是AB上一點,將正方形的一個角沿EC折疊,使得點B恰好與圓上的點F重合,則 tan∠AEF=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點A(3,0),二次函數(shù)圖象的對稱軸是x=1,下列結(jié)論:

①b2>4ac;②ac>0; ③當(dāng)x>1時,yx的增大而減小; ④3a+c>0;⑤任意實數(shù)m,a+b≥am2+bm.

其中結(jié)論正確的序號是( 。

A. ①②③ B. ①④⑤ C. ③④⑤ D. ①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)圖像上的兩點,動點P(x,0)x正半軸上運動,當(dāng)線段AP與線段BP之差達到最大時,點P的坐標(biāo)是(

A. (,0) B. (1,0) C. (,0) D. (,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,有兩個ABCABC′,其中C+∠C′=180°,且兩個三角形不相似能否分別用一條直線分割這兩個三角形,使ABC所分割成的兩個三角形與ABC所分割成的兩個三角形分別相似?如果能,畫出分割線,并標(biāo)明相等的角如果不能,請說明理由

小明經(jīng)過思考后嘗試從特殊情況入手,畫出了當(dāng)C=∠C′=90°時的分割線

(1)小明在完成畫圖后給出了如下證明思路請補全他的證明思路

由畫圖可得BCD∽△

由∠A+∠B=90°,∠ACD′+∠BCD′=90°,∠ACD′=∠B,

同理可得:∠B′=∠ACD

由此得:△ACD∽△

(2)當(dāng)C>∠C請在圖的兩個三角形中分別畫出滿足題意的分割線,并標(biāo)明相等的角.(不寫畫法

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)的圖象經(jīng)過三個點A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.

(1)當(dāng)y1﹣y2=4時,求m的值;

(2)如圖,過點B、C分別作x軸、y軸的垂線,兩垂線相交于點D,點P在x軸上,若三角形PBD的面積是8,請寫出點P坐標(biāo)(不需要寫解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A2,﹣3)在雙曲線y上,則下列哪個點也在此雙曲線上( 。

A. 16 B. (﹣1,6 C. 2,3 D. (﹣2,﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC中,∠ACB=90°,以AB為直徑作⊙O;過點C作直線CDAB的延長線于點D,且BD=OB,CD=CA

1)求證:CD是⊙O的切線.

2)如圖(2),過點CCEAB于點E,若⊙O的半徑為8,∠A=30°,求線段BE

查看答案和解析>>

同步練習(xí)冊答案