【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)G在弧BD上,連接AG,交CD于點(diǎn)K,過(guò)點(diǎn)G的直線(xiàn)交CD延長(zhǎng)線(xiàn)于點(diǎn)E,交AB延長(zhǎng)線(xiàn)于點(diǎn)F,且EG=EK.

(1)求證:EF是⊙O的切線(xiàn);

(2)若⊙O的半徑為13,CH=12,AC∥EF,求OH和FG的長(zhǎng).

【答案】1)證明見(jiàn)解析;(2.

【解析】

試題(1)連接OG,首先證明∠EGK=∠EKG,再證明∠HAK+∠KGE=90°,進(jìn)而得到∠OGA+∠KGE=90°GO⊥EF,進(jìn)而證明EF⊙O的切線(xiàn);

2)連接CO,利用勾股定理計(jì)算出HO的長(zhǎng),然后可得tan∠CAH=tan∠F=,再利用三角函數(shù)在Rt△OGF中計(jì)算出FG的長(zhǎng).

試題解析:1)證明:連接OG,

CD⊥AB于點(diǎn)H,

∴∠AHK=90°,

∴∠HKA+∠KAH=90°,

∵EG=EK

∴∠EGK=∠EKG,

∵∠HKA=∠GKE

∴∠HAK+∠KGE=90°,

∵AO=GO,

∴∠OAG=∠OGA,

∴∠OGA+∠KGE=90°,

∴GO⊥EF,

∴EF⊙O的切線(xiàn);

2)解:連接CO,在Rt△OHC中,

∵CO=13,CH=12,

∴HO=5,

∴AH=8

∵AC∥EF,

∴∠CAH=∠F,

∴tan∠CAH=tan∠F=,

Rt△OGF中,∵GO=13,

∴FG=

考點(diǎn): 1.切線(xiàn)的判定,2.解直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=x2+2x與直線(xiàn)y= 交于A,B兩點(diǎn),與直線(xiàn)x=2交于點(diǎn)P,將拋物線(xiàn)沿著射線(xiàn)AB平移個(gè)單位.

(1)平移后的拋物線(xiàn)頂點(diǎn)坐標(biāo)為_______;

(2)在整個(gè)平移過(guò)程中,點(diǎn)P經(jīng)過(guò)的路程為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD、CE是△ABC的高.

(1)試說(shuō)明B、C、D、E四點(diǎn)在同一個(gè)圓上;

(2)若SADE∶SABC=1∶4,BC=8,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為1的菱形中,,連結(jié)對(duì)角線(xiàn),以為邊做第二個(gè)菱形,.連結(jié),再以為邊做第三個(gè)菱形,使…按此規(guī)律所作的第2015個(gè)菱形的邊長(zhǎng)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是兩個(gè)全等的直角三角形,量得它們的斜邊長(zhǎng)為,較小銳角為,將這兩個(gè)三角形擺成如圖(1)所示的形狀,使點(diǎn)、、在同一條直線(xiàn)上,且點(diǎn)與點(diǎn)重合,將圖(1)中的繞點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)到圖(2)的位置,點(diǎn)在邊上,于點(diǎn),則線(xiàn)段的長(zhǎng)為______.(保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓桌面正上方的燈泡發(fā)出的光線(xiàn)照射桌面后,在地面上形成陰影(圓形).已知燈泡距離地面2.4m,桌面距離地面0.8m(桌面厚度不計(jì)算),若桌面的面積是1.2m,則地面上的陰影面積是__________m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子里裝有3個(gè)黑球和若干白球,它們除顏色外都相同.在不允許將球倒出來(lái)數(shù)的前提下,小明為估計(jì)其中白球數(shù),采用如下辦法:隨機(jī)從中摸出一球,記下顏色后放回袋中,充分搖勻后,再隨機(jī)摸出一球,記下顏色,不斷重復(fù)上述過(guò)程.小明共摸100次,其中20次摸到黑球.根據(jù)上述數(shù)據(jù),小明估計(jì)口袋中白球大約有( )

A. 10個(gè) B. 12 個(gè) C. 15 個(gè) D. 18個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小冬與小夏是某中學(xué)籃球隊(duì)的隊(duì)員,在最近五場(chǎng)球賽中的得分如下表所示:

第一場(chǎng)

第二場(chǎng)

第三場(chǎng)

第四場(chǎng)

第五場(chǎng)

小冬

小夏

(1)根據(jù)上表所給的數(shù)據(jù),填寫(xiě)下表:

平均數(shù)

中位數(shù)

眾數(shù)

方差

小冬

小夏

(2)根據(jù)以上信息,若教練選擇小冬參加下一場(chǎng)比賽,教練的理由是什么?

(3)若小冬的下一場(chǎng)球賽得分是分,則在小冬得分的四個(gè)統(tǒng)計(jì)量中(平均數(shù)、中位數(shù)、眾數(shù)與方差)哪些發(fā)生了改變,改變后是變大還是變?(只要回答是變大變小”)(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,矩形ABCD的對(duì)角線(xiàn)相交于點(diǎn)O,OFAD于點(diǎn)F,OF=2cm,AEBD于點(diǎn)E,且BEBD=1﹕4,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案