【題目】如圖,在ABCD中,對角線BD平分∠ABC,過點AAEBD,交CD的延長線于點E,過點EEFBC,交BC延長線于點F

1)求證:四邊形ABCD是菱形;

2)若∠ABC45°,BC2,求EF的長.

【答案】1)證明見解析;(2)EF=.

【解析】

1)證明∠ADB=ABD,得出AB=AD,即可得出結(jié)論;
2)由菱形的性質(zhì)得出AB=CD=BC=2,證明四邊形ABDE是平行四邊形,ECF=ABC=45°,得出AB=DE=2,CE=CD+DE=4,RtCEF,由等腰直角三角形的性質(zhì)和勾股定理即可求出EF的長.

(1)∵四邊形ABCD是平行四邊形,

ADBC,AB=CD,ABCD,

∴∠ADB=CBD,

BD平分∠ABC,

∴∠ABD=CBD,

∴∠ADB=ABD,

AB=AD,

∴平行四邊形ABCD是菱形;

(2)∵四邊形ABCD是菱形,

AB=CD=BC=2,

ABCD,AEBD,

∴四邊形ABDE是平行四邊形,ECF=ABC=45°,

AB=DE=2,

CE=CD+DE=4,

EFBC,ECF=45°,

∴△CEF是等腰直角三角形,

EF=CF= .

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知О是直線AB上的一點,OE平分

1)在圖(a)中,若,求的度數(shù);

2)在圖(a)中,若,直接寫出的度數(shù)(用含的代數(shù)式表示)

3)將圖(a)中的繞頂點O順時針旋轉(zhuǎn)至圖(b)的位置.

①探究的度數(shù)之間的關(guān)系,直接寫出結(jié)論;

②在的內(nèi)部有一條射線OF,滿足:,試確定的度數(shù)之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進一種商品,每件商品進價30元.試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)與每件銷售價x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式.(不寫出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元,那么每件商品的銷售價應定為多少元?

(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價定為多少元時利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OAOB,引射線OC(點C在∠AOB外),若∠BOCα0°<α90°),

OD平∠BOCOE平∠AOD

1)若α40°,請依題意補全圖形,并求∠BOE的度數(shù);

2)請根據(jù)∠BOCα,求出∠BOE的度數(shù)(用含α的表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面內(nèi)已知,、分別是的平分線,則的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于☉O,A是的中點,AE⊥AC于A,與☉O及CB的延長線交于點F、E,且=.

(1)求證:△ADC∽△EBA;

(2)如果AB=8,CD=5,求tan∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】客運公司規(guī)定旅客可免費攜帶一定質(zhì)量的行李,當行李質(zhì)量超過規(guī)定時,需付的行李費y(元)是行李質(zhì)量xkg)的一次函數(shù),且部分對應關(guān)系如表所示.

xkg

30

40

50

y(元)

4

6

8

1)求y關(guān)于x的函數(shù)表達式;

2)求旅客最多可免費攜帶行李的質(zhì)量;

3)當行李費2≤y≤7(元)時,可攜帶行李的質(zhì)量xkg)的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形在平面直角坐標系中,其中三個頂點的坐標分別為,,,則第四個頂點的坐標為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小張在貴陽購買了套經(jīng)濟適用房,他準備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.請根據(jù)圖中的數(shù)據(jù)(單位:),解答下列問題:

(1)用含的代數(shù)式表示地面總面積;

(2),地磚的平均費用為140,那么鋪地磚的總費用為多少元?

查看答案和解析>>

同步練習冊答案