【題目】已知拋物線y=ax2+bx+c經(jīng)過(guò)A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.

(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長(zhǎng)最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫(xiě)出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)若拋物線頂點(diǎn)為D,點(diǎn)Q為直線AC上一動(dòng)點(diǎn),當(dāng)△DOQ的周長(zhǎng)最小時(shí),求點(diǎn)Q的坐標(biāo).

【答案】
(1)

解:方法一:將A(﹣1,0)、B(3,0)、C(0,3)代入拋物線y=ax2+bx+c中,得:

解得:

∴拋物線的解析式:y=﹣x2+2x+3

方法二:

∵A(﹣1,0)、B(3,0)、C(0,3),

∴y=﹣(x+1)(x﹣3),即y=﹣x2+2x+3


(2)

解:方法一:連接BC,直線BC與直線l的交點(diǎn)為P;

∵點(diǎn)A、B關(guān)于直線l對(duì)稱,

∴PA=PB,

∴BC=PC+PB=PC+PA

設(shè)直線BC的解析式為y=kx+b(k≠0),將B(3,0),C(0,3)代入上式,得:

,解得:

∴直線BC的函數(shù)關(guān)系式y(tǒng)=﹣x+3;

當(dāng)x=1時(shí),y=2,即P的坐標(biāo)(1,2)

方法二:

連接BC,

∵l為對(duì)稱軸,

∴PB=PA,

∴C,B,P三點(diǎn)共線時(shí),△PAC周長(zhǎng)最小,把x=1代入lBC:y=﹣x+3,得P(1,2)


(3)

解:方法一:拋物線的對(duì)稱軸為:x=﹣ =1,設(shè)M(1,m),已知A(﹣1,0)、C(0,3),則:

MA2=m2+4,MC2=(3﹣m)2+1=m2﹣6m+10,AC2=10;

①若MA=MC,則MA2=MC2,得:

m2+4=m2﹣6m+10,得:m=1;

②若MA=AC,則MA2=AC2,得:

m2+4=10,得:m=± ;

③若MC=AC,則MC2=AC2,得:

m2﹣6m+10=10,得:m1=0,m2=6;

當(dāng)m=6時(shí),M、A、C三點(diǎn)共線,構(gòu)不成三角形,不合題意,故舍去;

綜上可知,符合條件的M點(diǎn),且坐標(biāo)為 M(1, )(1,﹣ )(1,1)(1,0)

方法二:

設(shè)M(1,t),A(﹣1,0),C(0,3),

∵△MAC為等腰三角形,

∴MA=MC,MA=AC,MC=AC,

(1+1)2+(t﹣0)2=(1﹣0)2+(t﹣3)2,∴t=1,

(1+1)2+(t﹣0)2=(﹣1﹣0)2+(0﹣3)2,∴t=±

(1﹣0)2+(t﹣3)2=(﹣1﹣0)2+(0﹣3)2,∴t1=6,t2=0,

經(jīng)檢驗(yàn),t=6時(shí),M、A、C三點(diǎn)共線,故舍去,

綜上可知,符合條件的點(diǎn)有4個(gè),M1(1, ),M2(1,﹣ ),M3(1,1),M4(1,0).


(4)

解:作點(diǎn)O關(guān)于直線AC的對(duì)稱點(diǎn)O交AC于H,

作HG⊥AO,垂足為G,

∴∠AHG+∠GHO=90°,∠AHG+∠GAH=90°,

∴∠GHO=∠GAH,

∴△GHO∽△GAH,

∴HG2=GOGA,

∵A(﹣1,0),C(0,3),

∴l(xiāng)AC:y=3x+3,H(﹣ , ),

∵H為OO′的中點(diǎn),

∴O′(﹣ , ),

∵D(1,4),

∴l(xiāng)OD:y= x+ ,lAC:y=3x+3,

∴x=﹣ ,y= ,

∴Q(﹣ ,


【解析】方法一:(1)直接將A、B、C三點(diǎn)坐標(biāo)代入拋物線的解析式中求出待定系數(shù)即可.(2)由圖知:A、B點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,那么根據(jù)拋物線的對(duì)稱性以及兩點(diǎn)之間線段最短可知:若連接BC,那么BC與直線l的交點(diǎn)即為符合條件的P點(diǎn).(3)由于△MAC的腰和底沒(méi)有明確,因此要分三種情況來(lái)討論:①M(fèi)A=AC、②MA=MC、③AC=MC;可先設(shè)出M點(diǎn)的坐標(biāo),然后用M點(diǎn)縱坐標(biāo)表示△MAC的三邊長(zhǎng),再按上面的三種情況列式求解.方法二:(1)略.(2)找出A點(diǎn)的對(duì)稱點(diǎn)點(diǎn)B,根據(jù)C,P,B三點(diǎn)共線求出BC與對(duì)稱軸的交點(diǎn)P.(3)用參數(shù)表示的點(diǎn)M坐標(biāo),分類討論三種情況,利用兩點(diǎn)間距離公式就可求解.(4)先求出AC的直線方程,利用斜率垂直公式求出OO’斜率及其直線方程,并求出H點(diǎn)坐標(biāo),進(jìn)而求出O’坐標(biāo),求出DO’直線方程后再與AC的直線方程聯(lián)立,求出Q點(diǎn)坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,都是等腰直角三角形,在線段上,連接,的延長(zhǎng)線交

(1)猜想線段、的關(guān)系;(不必證明)

(2)當(dāng)點(diǎn)內(nèi)部一點(diǎn)時(shí),使點(diǎn)和點(diǎn)分別在的兩側(cè),其它條件不變.請(qǐng)你在圖2中補(bǔ)全圖形,則(1)中結(jié)論成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)50°后得到△A′B′C′.若∠A=40°.∠B′=110°,則∠BCA′的度數(shù)是(

A.110°
B.80°
C.40°
D.30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座隧道的截面由拋物線和長(zhǎng)方形構(gòu)成,長(zhǎng)方形的長(zhǎng)為8m,寬為2m,隧道最高點(diǎn)P位于AB的中央且距地面6m,建立如圖所示的坐標(biāo)系:

(1)求拋物線的解析式;
(2)一輛貨車高4m,寬2m,能否從該隧道內(nèi)通過(guò),為什么?
(3)如果隧道內(nèi)設(shè)雙行道,那么這輛貨車是否可以順利通過(guò),為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形網(wǎng)格中,△ABC各頂點(diǎn)都在格點(diǎn)上,點(diǎn)A,C的坐標(biāo)分別為(﹣5,1)、(﹣1,4),結(jié)合所給的平面直角坐標(biāo)系解答下列問(wèn)題:

(1)①畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;
②畫(huà)出△ABC關(guān)于原點(diǎn)O對(duì)稱的△A2B2C2
(2)點(diǎn)C1的坐標(biāo)是;點(diǎn)C2的坐標(biāo)是;
(3)試判斷:△A1B1C1與△A2B2C2是否關(guān)于x軸對(duì)稱?(只需寫(xiě)出判斷結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三角形紙片 ABC 中,AB=15cm,AC=9cm,BC=12cm, 現(xiàn)將邊 AC 沿過(guò)點(diǎn) A 的直線折疊,使它落在 AB 邊上.若折痕交 BC 于點(diǎn) D,點(diǎn) C 落在點(diǎn) E 處,你能求出 BD 的長(zhǎng)嗎?請(qǐng)寫(xiě)出求解過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程
(1)x2﹣4x+1=0
(2)3(x﹣2)2=x(x﹣2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,ABCD為長(zhǎng)方形,其中點(diǎn)A、C坐標(biāo)分別為(﹣4,2)、(1,﹣4),且ADx軸,交y軸于M點(diǎn),ABx軸于N.

(1)求B、D兩點(diǎn)坐標(biāo)和長(zhǎng)方形ABCD的面積;

(2)一動(dòng)點(diǎn)PA出發(fā)(不與A點(diǎn)重合),以個(gè)單位/秒的速度沿ABB點(diǎn)運(yùn)動(dòng),在P點(diǎn)運(yùn)動(dòng)過(guò)程中,連接MP、OP,請(qǐng)直接寫(xiě)出∠AMP、MPO、PON之間的數(shù)量關(guān)系;

(3)是否存在某一時(shí)刻t,使三角形AMP的面積等于長(zhǎng)方形面積的?若存在,求t的值并求此時(shí)點(diǎn)P的坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市啟動(dòng)了第二屆“美麗港城,美在閱讀”全民閱讀活動(dòng),為了解市民每天的閱讀時(shí)間情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制如下尚不完整的頻數(shù)分布表:

閱讀時(shí)間
x(min)

0≤x<30

30≤x<60

60≤x<90

x≥90

合計(jì)

頻數(shù)

450

400

50

頻率

0.4

0.1

1


(1)補(bǔ)全表格;
(2)將每天閱讀時(shí)間不低于60min的市民稱為“閱讀愛(ài)好者”,若我市約有500萬(wàn)人,請(qǐng)估計(jì)我市能稱為“閱讀愛(ài)好者”的市民約有多少萬(wàn)人?

查看答案和解析>>

同步練習(xí)冊(cè)答案