【題目】我國(guó)西南五省市的部分地區(qū)發(fā)生嚴(yán)重旱災(zāi)為鼓勵(lì)節(jié)約用水,某市自來(lái)水公司采取分段收費(fèi)標(biāo)準(zhǔn),右圖反映的是每月收取水費(fèi)y與用水量x之間的函數(shù)關(guān)系

1)小明家五月份用水8,應(yīng)交水費(fèi)______ ;

2)按上述分段收費(fèi)標(biāo)準(zhǔn),小明家三、四月份分別交水費(fèi)26元和18問四月份比三月份節(jié)約用水多少噸?

【答案】116;(23

【解析】試題分析:1)直接根據(jù)圖象先求得10噸以內(nèi)每噸水應(yīng)繳20÷10=2元,再求小明家的水費(fèi);

2)根據(jù)圖象求得10噸以上每噸3元,3月份交水費(fèi)26>20元,故水費(fèi)按照超過(guò)10噸,每噸3元計(jì)算;四月份交水費(fèi)18<20元,故水費(fèi)按照每噸2元計(jì)算,分別計(jì)算用水量.做差即可求出節(jié)約的水量.

試題解析:(1)根據(jù)圖象可知,10噸以內(nèi)每噸水應(yīng)繳20÷10=2元,所以8×2=16(),

故答案為:16;

2)由圖可得10噸內(nèi)每噸2,當(dāng)y=18時(shí),x<10,

x=18×=9

當(dāng)x10時(shí),可設(shè)yx的關(guān)系為:y=kx+b,

由圖可知,當(dāng)x=10時(shí),y=20x=20時(shí)y=50,可解得k=3b=10,

yx之間的函數(shù)關(guān)系式為:y=3x10

∴當(dāng)y=26時(shí),知x>10,有26=3x10,解得x=12,

∴四月份比三月份節(jié)約用水:129=3().

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高速鐵路工程指揮部,要對(duì)某路段工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的投標(biāo)書.從投標(biāo)書中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的:若由甲隊(duì)先做20天,剩下的工程再由甲、乙兩隊(duì)合作60天完成.

(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

(2)已知甲隊(duì)每天的施工費(fèi)用為8.6萬(wàn)元,乙隊(duì)每天的施工費(fèi)用為5.4萬(wàn)元,工程預(yù)算的施工費(fèi)用為1000萬(wàn)元.若在甲、乙工程隊(duì)工作效率不變的情況下使施工時(shí)間最短,問擬安排預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)多邊形的所有內(nèi)角與它的一個(gè)外角之和是2018°,求這個(gè)外角的度數(shù)和它的邊數(shù)

【答案】38° ; 邊數(shù)13

【解析】試題分析根據(jù)多邊形的內(nèi)角和公式(n-2)180°可知,多邊形的內(nèi)角和是180°的倍數(shù),然后列式求解即可.

試題解析:設(shè)多邊形的邊數(shù)是n,加的外角為α,則

(n-2)180°+α=2018°,

α=2378°-180°n,又0<α<180°,

0<2378°-180°n<180°,

解得: n

n為正整數(shù),

可得n=13,

此時(shí)α=38°滿足條件,

這個(gè)外角的度數(shù)是38°,它的13邊形

【點(diǎn)睛】本題考查了多邊形的內(nèi)角和公式,利用好多邊形的內(nèi)角和是180°的倍數(shù)是解題的關(guān)鍵.

型】解答
結(jié)束】
22

【題目】已知, (1) ; (2) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)填空21202( ); 22212( ) ;23 222( )

(2)請(qǐng)用字母表示第n個(gè)等式,并驗(yàn)證你的發(fā)現(xiàn).

(3)利用(2)中你的發(fā)現(xiàn),求202122232201622017的值.

【答案】10,1,2;(2)證明見解析;3

【解析】試題分析:(1)根據(jù)0次冪的意義和乘方的意義進(jìn)行計(jì)算即可;

(2)觀察各等式得到2的相鄰兩個(gè)非負(fù)整數(shù)冪的差等于其中較小的2的非負(fù)整數(shù)冪,即2n-2n-1=2n-1(n為正整數(shù));

(3)由于21-20=20,22-21=21,23-22=22,…22018-22017=22017,然后把等式左邊與左邊相加,右邊與右邊相加即可求解.

試題解析:(1)21-20=1=20;22-21=2=21;23-22=4=22,

故答案為:0,1,2;

(2)觀察可得:2n-2n-1=2n-1(n為正整數(shù)),證明如下:

2n-2n-1=2×2n-1-2n-1=2n-1×(2-1)=2n-1;

(3)∵21-20=20

22-21=21,

23-22=22,

22018-22017=22017

∴22018-20=20+21+22+23+…+22016+22017,

∴20+21+22+23+…+22016+22017的值為22018-1.

型】解答
結(jié)束】
27

【題目】(1) 如圖1,MA1NA2,則∠A1+A2=_________度.

如圖2,MA1NA3,則∠A1+A2+A3=_________ 度.

如圖3,MA1NA4,則∠A1+A2+A3+A4=_________度.

如圖4,MA1NA5,則∠A1+A2+A3+A4+A5=_________度.

如圖5,MA1NAn,則∠A1+A2+A3+…+An=_________ 度.

(2) 如圖,已知AB∥CD,∠ABE∠CDE的平分線相交于F,∠E=80°,求∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某玩具廠有4個(gè)車間,某周是質(zhì)量檢查周,現(xiàn)每個(gè)車間都原有a(a>0)個(gè)成品,且每個(gè)車間每天都生產(chǎn)b(b>0)個(gè)成品,質(zhì)量科派出若干名檢驗(yàn)員周一、周二檢驗(yàn)其中兩個(gè)車間原有的和這兩天生產(chǎn)的所有成品,然后,周三到周五檢驗(yàn)另外兩個(gè)車間原有的和本周生產(chǎn)的所有成品,假定每名檢驗(yàn)員每天檢驗(yàn)的成品數(shù)相同.

(1)這若干名檢驗(yàn)員1天共檢驗(yàn)多少個(gè)成品?(用含a、b的代數(shù)式表示)

(2)若一名檢驗(yàn)員1天能檢驗(yàn)b個(gè)成品,則質(zhì)量科至少要派出多少名檢驗(yàn)員?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2700″=_____′=_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】攀枝花芒果由于品質(zhì)高、口感好而聞名全國(guó),通過(guò)優(yōu)質(zhì)快捷的網(wǎng)絡(luò)銷售渠道,小明的媽媽先購(gòu)買了2A品種芒果和3B品種芒果,共花費(fèi)450元;后又購(gòu)買了lA品種芒果和2B品種芒果,共花費(fèi)275元(每次兩種芒果的售價(jià)都不變).

1)問A品種芒果和B品種芒果的售價(jià)分別是每箱多少元?

2)現(xiàn)要購(gòu)買兩種芒果共18箱,要求B品種芒果的數(shù)量不少于A品種芒果數(shù)量的2倍,但不超過(guò)A品種芒果數(shù)量的4倍,請(qǐng)你設(shè)計(jì)購(gòu)買方案,并寫出所需費(fèi)用最低的購(gòu)買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知,點(diǎn)Am-2,3+mx軸上,則m=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2-2mx=-m2+2x的兩個(gè)實(shí)數(shù)根x1,x2滿足|x1|=x2,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案