【題目】如圖,在平面直角坐標(biāo)系xOy中,已知,,矩形OABC的對角線交于點P,點M在經(jīng)過點P的函數(shù)的圖象上運動,k的值為__________,OM長的最小值__________.
【答案】12
【解析】
先求出P(4,3),求得k=4×3=12,進而得出y=,再根據(jù)雙曲線的對稱性可得,當(dāng)點M在第一象限角平分線上時,OM最短,即當(dāng)x=y時,x=,解得x值,進而求出點M的坐標(biāo),從而得到OM的最小值.
解:∵A(8,0),C(0,6),矩形OABC的對角線交于點P,
∴P(4,3),
代入函數(shù)可得,k=4×3=12,
∴y=,
∵點M在經(jīng)過點P的函數(shù)y= (x>0)的圖象上運動,
∴根據(jù)雙曲線的對稱性可得,當(dāng)點M在第一象限角平分線上時,OM最短,
當(dāng)x=y時,x=,
解得x=±,
又∵x>0,
∴x=,
∴M(,),
∴OM2==24,
∴OM=.
故答案為:12;.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,旗桿及升旗臺的剖面和教學(xué)樓的剖面在同一平面上,旗桿與地面垂直,在教學(xué)樓底部E點處測得旗桿頂端的仰角∠AED=58°,升旗臺底部到教學(xué)樓底部的距離DE=7米,升旗臺坡面CD的坡度i=1:0.75,坡長CD=2米,若旗桿底部到坡面CD的水平距離BC=1米,求旗桿AB的高度約為多少?(保留一位小數(shù),參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點 C 為 Rt△ACB 與 Rt△DCE 的公共點,∠ACB=∠DCE=90°,連 接 AD、BE,過點 C 作 CF⊥AD 于點 F,延長 FC 交 BE 于點 G.若 AC=BC=25,CE=15, DC=20,則的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場要經(jīng)營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大;最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】龐老師和馮老師準(zhǔn)備整理一批數(shù)學(xué)試卷.馮老師單獨整理需要50分鐘完成;若龐老師和馮老師共同整理30分鐘后,龐老師需再單獨整理30分鐘才能完成.
(1)求龐老師單獨整理需要多少分鐘完成;
(2)若馮老師因工作需要,他的整理時間不超過30分鐘,則龐老師至少整理多少分鐘才能完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,,BE是AC邊上的中線,點D在射線BC上.
(1)如圖1,點D在BC邊上,,AD與BE相交于點P,過點A作,交BE的延長線于點F,易得的值為 ;
(2)如圖2,在△ABC中,,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,,求的值;
(3)在(2)的條件下,若CD=2,AC=6,則BP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(1,4)和(3,0),點C是y軸上的一個動點,且A,B,C三點不在同一條直線上,當(dāng)△ABC的周長最小時,點C的坐標(biāo)是____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,一組同心圓的圓心為坐標(biāo)原點,它們的半徑分別為.按照“加"依次遞增; 一組平行線, ..分別過,且與過該點的圓相切.若半徑為的圓與在第一象限內(nèi)交于點,半徑為的圓與在第象限內(nèi)相交于點,半徑為的圓與在第一象限內(nèi)相交于點按照此規(guī)律,則點的坐標(biāo)是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足為H,與AC平行的圓O的一條切線交CD的延長線于點M,交AB的延長線于點E,切點為F,連接AF交CD于點N.
(1)求證:CA=CN;
(2)連接DF,若cos∠DFA=,AN=,求圓O的直徑的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com