【題目】如圖,在口ABCD中,分別以邊BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,連接AF,AE.
(1)求證:△ABF≌△EDA;
(2)延長AB與CF相交于G,若AF⊥AE,求證BF⊥BC.
【答案】(1)證明見解析;(2)證明見解析.
【解析】(1)證明AB=DE,F(xiàn)B=AD,∠ABF=∠ADE即可解決問題;
(2)只要證明FB⊥AD即可解決問題.
詳(1)證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,AD=BC,∠ABC=∠ADC,
∵BC=BF,CD=DE,
∴BF=AD,AB=DE,
∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°,∠EDC=∠CBF,
∴∠ADE=∠ABF,
在△ABF與△EDA中,
∵AB=DE,∠ABF=∠ADE,BF=AD
∴△ABF≌△EDA.
(2)證明:延長FB交AD于H.
∵AE⊥AF,
∴∠EAF=90°,
∵△ABF≌△EDA,
∴∠EAD=∠AFB,
∵∠EAD+∠FAH=90°,
∴∠FAH+∠AFB=90°,
∴∠AHF=90°,即FB⊥AD,
∵AD∥BC,
∴FB⊥BC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,解答問題
大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部地寫出來,于是小明用﹣1來表示的小數(shù)部分,你同意小明的表示方法嗎?
事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.
又例如:<<,即2<<3,
∴的整數(shù)部分為2,小數(shù)部分為(﹣2)
請解答:
(1)整數(shù)部分是 ,小數(shù)部分是 .
(2)如果的小數(shù)部分為a,的整數(shù)部分為b,求|a﹣b|+的值.
(3)已知:9+=x+y,其中x是整數(shù),且0<y<1,求x﹣y的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查適合做抽樣調(diào)查的是
A. 檢查一枚用于發(fā)射衛(wèi)星的運(yùn)載火箭的各零部件
B. 對某社區(qū)的衛(wèi)生死角進(jìn)行調(diào)查
C. 對某班學(xué)生進(jìn)行6月5日式“世界環(huán)境日”知曉情況的調(diào)查
D. 對中學(xué)生目前的睡眠情況進(jìn)行調(diào)查
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB于點D,BE平分∠ABC,且BE⊥AC于點E,與CD相交于點F,H是邊BC的中點,連接 DH與 BE相交于點 G,若GE=3,則BF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形 ABCD 中,∠BAD=α,∠BCD=180°-α,BD 平分∠ABC.
(1)如圖,若α=90°,根據(jù)教材中一個重要性質(zhì)直接可得 DA=CD,這個性質(zhì)是 ;
(2)問題解決:如圖,求證:AD=CD;
(3)問題拓展:如圖,在等腰△ABC 中,∠BAC=100°,BD 平分∠ABC,求證:BD+AD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.
(1)求坡底C點到大樓距離AC的值;
(2)求斜坡CD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,網(wǎng)格線是由邊長為1的小正方形格子組成的,小正方形的頂點叫做格點,以格點為頂點的多邊形叫做格點多邊形.小明與數(shù)學(xué)小組的同學(xué)研究發(fā)現(xiàn),內(nèi)部含有3個格點的四邊形的面積與該四邊形邊上的格點數(shù)有某種關(guān)系,請你觀察圖中的4個格點四邊形.設(shè)內(nèi)部含有3個格點的四邊形的面積為,其各邊上格點的個數(shù)之和為,則與之間的關(guān)系式為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,點A與原點重合,點B在y軸的正半軸上,點D在x軸的負(fù)半軸上,將正方形ABCD繞點A逆時針旋轉(zhuǎn)30°至正方形AB'C′D′的位置,B'C′與CD相交于點M,則點M的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線AB∥CD,點P在其所在平面上,且不在直線AB,CD,AC上,設(shè)∠PAB=α,∠PCD=β,∠APC=γ(α,β,γ,均不大于180°,且不小于0°).
(1)如圖1,當(dāng)點P在兩條平行直線AB,CD之間、直線AC的右邊時試確定α,β,γ的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點P在直線AB的上面、直線AC的右邊時試確定α,β,γ的數(shù)量關(guān)系;
(3)α,β,γ的數(shù)量關(guān)系除了上面的兩種關(guān)系之外,還有其他的數(shù)量關(guān)系,請直接寫出這些.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com