【題目】如圖,AB為半圓O的在直徑,AD、BC分別切⊙O于A、B兩點,CD切⊙O于點E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③,④OD:OC=DE:EC,⑤,正確的有( )
A. 2個 B. 3個 C. 4個 D. 5個
【答案】D
【解析】
試題連接OE,如圖所示:∵AD與圓O相切,DC與圓O相切,BC與圓O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,選項②正確;
在Rt△ADO和Rt△EDO中,∵OD=OD,DA=DE,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,選項①正確;
∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴,即,選項⑤正確;
∵∠AOD+∠COB=∠AOD+∠ADO=90°,∠A=∠B=90°,∴△AOD∽△BOC,∴,選項③正確;
同理△ODE∽△OEC,∴,選項④正確;
故選D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,且點A的坐標(biāo)為(1,0),與y軸交于點C,對稱軸直線x=2與x軸相交于點D,點P是拋物線對稱軸上的一個動點,以每秒1個單位長度的速度從拋物線的頂點E向下運動,設(shè)點P運動的時間為t(s).
(1)點B的坐標(biāo)為 ,拋物線的解析式是 ;
(2)求當(dāng)t為何值時,△PAC的周長最。
(3)當(dāng)t為何值時,△PAC是以AC為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當(dāng)x>﹣1時,y>0,其中正確結(jié)論的個數(shù)是
A.5個 B.4個 C.3個 D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點A,B,與軸交于點C。過點C作CD∥x軸,交拋物線的對稱軸于點D,連結(jié)BD。已知點A坐標(biāo)為(-1,0)。
(1)求該拋物線的解析式;
(2)求梯形COBD的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】炮彈的運行軌道若不計空氣阻力是一條拋物線.現(xiàn)測得我軍炮位A與射擊目標(biāo)B的水平距離為600m,炮彈運行的最大高度為1200m.
(1)求此拋物線的解析式;
(2)若在A、B之間距離A點500m處有一高350m的障礙物,計算炮彈能否越過障礙物.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(5,9),已知拋物線的頂點D的橫坐標(biāo)是2.
(1)求拋物線的解析式及頂點坐標(biāo);
(2)在軸上是否存在一點C,與A,B組成等腰三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;
(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在同一平面內(nèi),將兩個全等的等腰直角和擺放在一起,為公共頂點,,它們的斜邊長為2,若固定不動,繞點旋轉(zhuǎn),、與邊的交點分別為、(點不與點重合,點不與點重合),設(shè),.
(1)請在圖中找出兩對相似而不全等的三角形,并選取其中一對加以證明.
(2)求與的函數(shù)關(guān)系式,直接寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全球最大的關(guān)公塑像矗立在荊州古城東門外.如圖,張三同學(xué)在東門城墻上C處測得塑像底部B處的俯角為18°48′,測得塑像頂部A處的仰角為45°,點D在觀測點C正下方城墻底的地面上,若CD=10米,則此塑像的高AB約為 米(參考數(shù)據(jù):tan78°12′≈4.8).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著新農(nóng)村的建設(shè)和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達到最高,水柱落地處離池中心米.
(1)請你建立適當(dāng)?shù)闹苯亲鴺?biāo)系,并求出水柱拋物線的函數(shù)解析式;
(2)求出水柱的最大高度是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com