【題目】如圖,已知點(diǎn)C為線段AB上一點(diǎn),△ACM、△BCN是等邊三角形.
(1)如圖1,求證:AN=BM;
(2)如圖2,將△ACM繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)180°,使點(diǎn)A落在CB上,結(jié)論“AN=BM”是否還成立,若成立,請(qǐng)證明:若不成立,請(qǐng)說(shuō)明理由;
(3)在(2)所得的圖形中,設(shè)MA的延長(zhǎng)線交BN于D(如圖3),試判斷△ABD的形狀,并證明你的結(jié)論.
【答案】(1)證明見(jiàn)解析;(2)成立,理由見(jiàn)解析;(3)△ABD是等邊三角形.
【解析】
(1)證明△ACN≌△MCB(SAS)即可解決問(wèn)題;
(2)證明△ACN≌△MCB(SAS)即可解決問(wèn)題;
(3)根據(jù)三個(gè)角是60°的三角形是等邊三角形即可證明.
(1)證明:如圖1中,
∵△ACM,△BCN都是等邊三角形,
∴AC=CM,CN=CB,∠ACM=∠BCN=60°,
∴∠ACN=∠MCB,
∴△ACN≌△MCB(SAS),
∴AN=BM.
(2)解:結(jié)論仍然成立.
理由:∵△ACM,△BCN都是等邊三角形,
∴AC=CM,CN=CB,∠ACN=∠MCB=60°,
∴△ACN≌△MCB(SAS),
∴AN=BM.
(3)結(jié)論:△ABD是等邊三角形.
理由:∵△ACM是等邊三角形,
∴∠BAD=∠CAM=60°,
∵∠ABD=60°,
∴∠DAB=∠DBA=∠ADB=60°,
∴△ABD是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn)
如圖1,△ABC和△DCE都是等邊三角形,點(diǎn)B、D、E在同一直線上,連接AE.
填空:
①∠AEC的度數(shù)為 ;
②線段AE、BD之間的數(shù)量關(guān)系為 .
(2)拓展探究
如圖2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)B、D、E在同一直線上,CM為△DCE中DE邊上的高,連接AE.試求∠AEB的度數(shù)及判斷線段CM、AE、BM之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)解決問(wèn)題
如圖3,在正方形ABCD中,CD=2,點(diǎn)P在以AC為直徑的半圓上,AP=1,①∠DPC= °; ②請(qǐng)直接寫(xiě)出點(diǎn)D到PC的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求證:AD平分∠BAC;
(2)直接寫(xiě)出AB+AC與AE之間的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】快、慢兩車(chē)分別從相距540千米路程的甲、乙兩地同時(shí)出發(fā),勻速行駛,先相向而行,途中慢車(chē)因故停留1小時(shí),然后以原速度繼續(xù)向甲地行駛,到達(dá)甲地后停止行駛;快車(chē)到達(dá)乙地后,立即按原路原速返回甲地(快車(chē)掉頭的時(shí)間忽略不計(jì)),快、慢兩車(chē)距乙地的路程y(千米)與所有時(shí)間x(小時(shí))之間的函數(shù)圖像如圖。快車(chē)與慢車(chē)第一次相遇時(shí),慢車(chē)距離甲地_________千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知等腰三角形的一邊長(zhǎng)等于8cm,一邊長(zhǎng)等于9cm,求它的周長(zhǎng);
(2)等腰三角形的一邊長(zhǎng)等于6cm,周長(zhǎng)等于28cm,求其他兩邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是BC的中點(diǎn),AB⊥BC,DC⊥BC,AE平分∠BAD,下列結(jié)論:①∠AED=90°②∠ADE=∠CDE③DE=BE④AD=AB+CD,四個(gè)結(jié)論中成立的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了備戰(zhàn)初三物理、化學(xué)實(shí)驗(yàn)操作考試,某校對(duì)初三學(xué)生進(jìn)行了模擬訓(xùn)練.物理、化學(xué)各有3個(gè)不同的操作實(shí)驗(yàn)題目,物理用番號(hào)①、②、③代表,化學(xué)用字母a、b、c表示.測(cè)試時(shí)每名學(xué)生每科只操作一個(gè)實(shí)驗(yàn),實(shí)驗(yàn)的題目由學(xué)生抽簽確定.
(1)小張同學(xué)對(duì)物理的①、②和化學(xué)的b、c實(shí)驗(yàn)準(zhǔn)備得較好.請(qǐng)用樹(shù)形圖或列表法求他兩科都抽到準(zhǔn)備得較好的實(shí)驗(yàn)題目的概率;
(2)小明同學(xué)對(duì)物理的①、②、③和化學(xué)的a實(shí)驗(yàn)準(zhǔn)備得較好.他兩科都抽到準(zhǔn)備得較好的實(shí)驗(yàn)題目的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把含有30°角的三角板ABO置入平面直角坐標(biāo)系中,A,B兩點(diǎn)坐標(biāo)分別為(3,0)和(0,3 ).動(dòng)點(diǎn)P從A點(diǎn)開(kāi)始沿折線AO﹣OB﹣BA運(yùn)動(dòng),點(diǎn)P在AO,OB,BA上運(yùn)動(dòng),速度分別為1,,2(長(zhǎng)度單位/秒)﹒一直尺的上邊緣l從x軸的位置開(kāi)始以(長(zhǎng)度單位/秒)的速度向上平行移動(dòng)(即移動(dòng)過(guò)程中保持l∥x軸),且分別與OB,AB交于E,F(xiàn)兩點(diǎn)﹒設(shè)動(dòng)點(diǎn)P與動(dòng)直線l同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)P沿折線AO﹣OB﹣BA運(yùn)動(dòng)一周時(shí),直線l和動(dòng)點(diǎn)P同時(shí)停止運(yùn)動(dòng).
請(qǐng)解答下列問(wèn)題:
(1)過(guò)A,B兩點(diǎn)的直線解析式是 ,∠BAO= ;
(2)當(dāng)t﹦4時(shí),點(diǎn)P的坐標(biāo)為 ;當(dāng)t﹦ ,點(diǎn)P與點(diǎn)E重合;
(3)作點(diǎn)P關(guān)于直線EF的對(duì)稱(chēng)點(diǎn)P′.在運(yùn)動(dòng)過(guò)程中,若形成的四邊形PEP′F為菱形,則t的值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,∠BAC=30°,延長(zhǎng)BC至D使CD=BC,連接AD,且AD=4,點(diǎn)P為線段AC上一動(dòng)點(diǎn),連接BP.則2BP+AP的最小值為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com